Geometrical Modeling Method of Process Driven by Typical Process Model

2013 ◽  
Vol 770 ◽  
pp. 361-365
Author(s):  
Yu Peng Xin ◽  
Xi Tian Tian ◽  
Li Jiang Huang ◽  
Jun Hao Geng

In order to improve the efficiency of NC machining programming, and realize the rapid establishment of blank model or middle blank model, a geometrical modeling method of process driven by typical process model was put forward. This method is based on the typical process for the establishment of typical process model, to establish a mapping between modeling operation and machining process ontology, and format model mapping rules. In the process geometrical modeling of the high similarity parts, by calling the typical process model mapping rules, can generate process models automatically. A enterprise disc type parts typical process as an example is used to verify the proposed method.

2012 ◽  
Vol 271-272 ◽  
pp. 1006-1011
Author(s):  
Neng Wan ◽  
Zhi Yong Chang

To tackle process knowledge discovery difficulty in machining process, this paper studies knowledge discovery method of 2.5–dimensional machining characteristics based on process model with model based definition technology, and finds out machining process design knowledge with the natural structured process description ability of MBD process model. Firstly, the composition of machining geometry ontology and process ontology is analyzed. Secondly, decision tree between ontology are obtained by analyzing abundant samples of MBD process model. Thus, the process and method of reasoning from geometry ontology to process ontology is achieved. Finally, the validity of process knowledge discovery method is exemplified with a group of MBD process models.


2011 ◽  
Vol 121-126 ◽  
pp. 1058-1062
Author(s):  
Neng Wan ◽  
Yang Yang

In order to change the incompleteness of data link, tediousness of data conversion and unclearness of process expression in the traditional two-dimensional machining process design, this paper researches on a new model of MBD-based one. The author proposes the 3Dprocess model as the carrier to manufacture information, and establishes closed loop architecture composed of 3D machining process design, 3D process management and feedback of field application of 3Dmachining process. The author then analyzes the composition elements of machining process model under the condition of MBD, proposes the establishment of machining process ontology and geometric modeling ontology, and achieves the conversion between these two. This paper researches on the composition of MBD machining process card, establishes the mapping relation between process expression elements and process card elements in the 3Dmachining process model, and ultimately realizes the machining process design in the 3Denvironment.


2020 ◽  
Vol 175 (1-4) ◽  
pp. 123-141
Author(s):  
Josep Carmona ◽  
Lluís Padró ◽  
Luis Delicado

Computing a mapping between two process models is a crucial technique, since it enables reasoning and operating across processes, like providing a similarity score between two processes, or merging different process variants to generate a consolidated process model. In this paper we present a new flexible technique for process model mapping, based on the relaxation labeling constraint satisfaction algorithm. The technique can be instantiated so that different modes are devised, depending on the context. For instance, it can be adapted to the case where one of the mapped process models is incomplete, or it can be used to ground an adaptable similarity measure between process models. The approach has been implemented inside the open platform NLP4BPM, providing a visualization of the performed mappings and computed similarity scores. The experimental results witness the flexibility and usefulness of the technique proposed.


Author(s):  
Josep Carmona ◽  
Lluís Padró ◽  
Luis Delicado

Computing a mapping between two process models is a crucial technique, since it enables reasoning and operating across processes, like providing a similarity score between two processes, or merging different process variants to generate a consolidated process model. In this paper we present a new flexible technique for process model mapping, based on the relaxation labeling constraint satisfaction algorithm. The technique can be instantiated so that different modes are devised, depending on the context. For instance, it can be adapted to the case where one of the mapped process models is incomplete, or it can be used to ground an adaptable similarity measure between process models. The approach has been implemented inside the open platform NLP4BPM, providing a visualization of the performed mappings and computed similarity scores. The experimental results witness the flexibility and usefulness of the technique proposed.


SPIEL ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 121-145
Author(s):  
Larissa Leonhard ◽  
Anne Bartsch ◽  
Frank M. Schneider

This article presents an extended dual-process model of entertainment effects on political information processing and engagement. We suggest that entertainment consumption can either be driven by hedonic, escapist motivations that are associated with a superficial mode of information processing, or by eudaimonic, truth-seeking motivations that prompt more elaborate forms of information processing. This framework offers substantial extensions to existing dual-process models of entertainment by conceptualizing the effects of entertainment on active and reflective forms of information seeking, knowledge acquisition and political participation.


2012 ◽  
Vol 268-270 ◽  
pp. 845-850
Author(s):  
Gang Sun ◽  
Yuan Li ◽  
Jian Feng Yu ◽  
Jie Zhang ◽  
Liang Dong

Fixtures, tools, and other assembly resources have an important role in the assembly of complex products, so it is very necessary to consider the interactive relationship between the resources model and the product model for assembly order planning in 3D environment. Firstly, the features of assembly process planning involved resources are analyzed. Secondly, the concept of the assembly process intention(AsmPI) is introduced,and an assembly process can be divided into an AsmPI sequence. Thirdly, based on the graph theory, a resource-involved assembly process model is built up. At last, setting a typical structure as an example, the validity of this modeling method is verified.


Author(s):  
Paul Witherell ◽  
Shaw Feng ◽  
Timothy W. Simpson ◽  
David B. Saint John ◽  
Pan Michaleris ◽  
...  

In this paper, we advocate for a more harmonized approach to model development for additive manufacturing (AM) processes, through classification and metamodeling that will support AM process model composability, reusability, and integration. We review several types of AM process models and use the direct metal powder bed fusion AM process to provide illustrative examples of the proposed classification and metamodel approach. We describe how a coordinated approach can be used to extend modeling capabilities by promoting model composability. As part of future work, a framework is envisioned to realize a more coherent strategy for model development and deployment.


2016 ◽  
Vol 693 ◽  
pp. 1684-1692 ◽  
Author(s):  
Hong Lei Zhang ◽  
Wen He Liao ◽  
Yu Guo ◽  
Wen An Yang

Faced with the problem of generation for 3D machining process model, an approach to generate three dimensional machining process model according to information from design model based on definition is proposed. Compared with the existing methods, the approach utilizes multiple information of design model based on definition and takes many phases into consideration of 3D process model generation. The structure of 3D machining process model is defined and the course of 3D process model generation is researched, including multiple information acquirement, generation of procedure geometric models and annotation. Finally, the framework of system and application for 3D machining process model generation are presented for validation purposes.


2019 ◽  
Vol 25 (5) ◽  
pp. 908-922 ◽  
Author(s):  
Remco Dijkman ◽  
Oktay Turetken ◽  
Geoffrey Robert van IJzendoorn ◽  
Meint de Vries

Purpose Business process models describe the way of working in an organization. Typically, business process models distinguish between the normal flow of work and exceptions to that normal flow. However, they often present an idealized view. This means that unexpected exceptions – exceptions that are not modeled in the business process model – can also occur in practice. This has an effect on the efficiency of the organization, because information systems are not developed to handle unexpected exceptions. The purpose of this paper is to study the relation between the occurrence of exceptions and operational performance. Design/methodology/approach The paper does this by analyzing the execution logs of business processes from five organizations, classifying execution paths as normal or exceptional. Subsequently, it analyzes the differences between normal and exceptional paths. Findings The results show that exceptions are related to worse operational performance in terms of a longer throughput time and that unexpected exceptions relate to a stronger increase in throughput time than expected exceptions. Practical implications These findings lead to practical implications on policies that can be followed with respect to exceptions. Most importantly, unexpected exceptions should be avoided by incorporating them into the process – and thus transforming them into expected exceptions – as much as possible. Also, as not all exceptions lead to longer throughput times, continuous improvement should be employed to continuously monitor the occurrence of exceptions and make decisions on their desirability in the process. Originality/value While work exists on analyzing the occurrence of exceptions in business processes, especially in the context of process conformance analysis, to the best of the authors’ knowledge this is the first work that analyzes the possible consequences of such exceptions.


Sign in / Sign up

Export Citation Format

Share Document