scholarly journals Thin Strip Profile Control Capability of Roll Crossing and Shifting in Cold Rolling Mill

2013 ◽  
Vol 773-774 ◽  
pp. 70-78 ◽  
Author(s):  
Abdulrahman Aljabri ◽  
Zheng Yi Jiang ◽  
Dong Bin Wei ◽  
Xiao Dong Wang ◽  
Hasan Tibar

Controlling cold strip profile is a difficult and significant problem has been found in industry during thin strip rolling. At present choosing the new type of strip rolling mill is the one of main methods to control the strip shape quality in cold rolling. The influences of rolling process parameters such as the work roll cross angle and work roll shifting on the strip shape and profile of thin strip are recognised throughout this study. The results show that the roll crossing and shifting is efficient way to control the strip shape. The increase of the work roll crossing angle would lead to improve the strip profile significantly by decreasing the exit strip crown and edge drop. The strip profile would be enhanced if the axial roll shifting was increased. Moreover, the total rolling force was analysed in detail by changing the roll cross angle and axial shifting roll.

2014 ◽  
Vol 894 ◽  
pp. 212-216 ◽  
Author(s):  
Abdulrahman Aljabri ◽  
Zheng Yi Jiang ◽  
Dong Bin Wei

Strip profile control during rolling is required to assure the dimensional quality of rolled thin strip is acceptable for customers. Throughout rolling, the strip profile is controlled by using the advanced shape control rolling mill, such as the combination of work roll crossing and shifting during asymmetrical rolling, the one of the valuable methods to control the strip profile quality in rolling process. In this paper, the influences of cold rolling parameters such as the crossing angle and axial shifting value of work rolls on the strip profile are analysed. The strip shape control is discussed under both symmetrical and asymmetrical rolling conditions. The obtained results are appropriate to control the rolled thin strip profile in practice.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 401
Author(s):  
Hainan He ◽  
Jian Shao ◽  
Xiaochen Wang ◽  
Quan Yang ◽  
Xiawei Feng

Due to the requirement of magnetic properties of silicon steel sheets, producing high-precision size strips is the main aim of the cold rolling industry. The tapered work roll shifting technique of the six-high cold rolling mill is effective in reducing the difference in transverse thickness of the strip edge, but the effective area is limited, especially for a high crown strip after the hot rolling process. The six-high mill with a small work roll size can produce a strip with higher strength and lower thickness under a smaller rolling load. At the same time, the profile of the strip can be substantially improved. By advancing a well-established analytical method, a series of simulation analyses are conducted to reveal the effectiveness of a small work roll radius for the strip profile in the six-high cold rolling process. Through the analysis of flattening deformation and deflection deformation on the load, the change rule of the strip profile produced by the work roll with a small roll diameter can be obtained. Combined with theoretical analysis and industrial experiments, it can be found that the improvement effect of the small work roll radius on the profile of the silicon strip is as significant.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Hasan Tibar ◽  
Zhengyi Jiang

The optimization of rolling parameters in order to achieve better strip shape and to reduce rolling force is a challenge in rolling practice. In this paper, thin strip asymmetrical rolling of aluminum at various speed ratios under lubricated condition has been investigated at various combinations of work rolls cross (WRC) angles and work rolls shifting (WRS) values. The effects of strip width, reduction, and rolling speed on strip shape taking WRC and WRS into consideration are discussed. Results show that strip profile improves significantly when the WRC angle is increased from 0° to 1°, with an associated reduction in rolling force. Increasing WRS value from 0 to 8 mm improves the strip profile as well but not as significantly as when WRC angle is increased. No significant improvement was found in strip shape when the strip width was increased. At higher reduction, the strip shape was improved; a decrease in the rolling force was also observed. A higher speed ratio was found to be effective only at a higher WRC angle. The effect of lubrication on the strip profile was significant. Results indicate that an optimum combination of WRC, WRS, reduction, width, and speed ratio under lubricated conditions can ensure an improved exit strip profile, reduce rolling force, and obtain a better quality strip.


2015 ◽  
Vol 29 (10n11) ◽  
pp. 1540032 ◽  
Author(s):  
Abdulrahman Aljabri ◽  
Zhengyi Jiang ◽  
Dongbin Wei

In order to analyze the effects of cold rolling parameters such as the crossing angle and axial shifting value of work rolls on the strip profile, extensive tests were carried out on a 4-high rolling mill equipped with a work roll crossing and shifting system. The results show that the strip profile is nearly flat under asymmetrical rolling. The rolling force was also analyzed in detail by changing the crossing angle and axial shifting value of work rolls.


2014 ◽  
Vol 988 ◽  
pp. 257-262 ◽  
Author(s):  
Ke Zhi Linghu ◽  
Zheng Yi Jiang ◽  
Fei Li ◽  
Jing Wei Zhao ◽  
Meng Yu ◽  
...  

A 3D elastic-plastic finite element method (FEM) model of cold strip rolling for 6-high continuous variable crown (CVC) rolling mill was developed. The rolling force distributions were obtained by the internal iteration processes. The calculated error has been significantly reduced by the developed model. the absolute error between the simulated results and the actual values is obtained to be less than 10μm, and relative error is less than 1%. The developed model is significant in investigating the profile control capability of the CVC cold rolling mill in terms of work roll bending, intermediate roll bending and intermediate roll shifting.


2014 ◽  
Vol 1061-1062 ◽  
pp. 515-521 ◽  
Author(s):  
Abdulrahman Aljabri ◽  
Zheng Yi Jiang ◽  
Dong Bin Wei

Cold rolled thin strip has received a great deal of attention through technological and theoretical progress in the rolling process, as well as from researchers who have focused on some essential parameters of strip such as its shape and profile. This paper describes the development of a 3-D finite element model of the shape of thin strip during cold rolling to simulate the cold rolling of WCS (work roll crossing and shifting) in asymmetric rolling. This finite element model considers the asymmetrical rolling parameters such as variations in the diameters of the rolls and the crossing angle as the work roll shifts on the strip during cold rolling. The shape and profile of the strip are discussed in the asymmetrical and symmetrical rolling conditions, while the total rolling force and distribution of stress are discussed in the case where the roll cross angle and axial shifting roll changes. The results can then be used to control the shape and profile of thin strip during rolling.


1970 ◽  
Vol 92 (2) ◽  
pp. 453-459 ◽  
Author(s):  
H. A. Kuhn ◽  
A. S. Weinstein

A method is presented for the determination of the lateral distribution of pressure in thin strip rolling. A simplified three-dimensional analysis of elastic deformation of the rolls is developed for use in the method. Pressure in the roll edge contact regions (in underface rolling), as well as in the roll-strip contact region, is considered. In the case of four-high, planetary, and Sendzimir-type mills, the lateral distribution of pressure between the work roll and backup rolls is also found. Calculated results indicate lateral pressure distributions which have peak values at each edge of the strip with a minimum at the center. The degree of this nonuniformity depends on roll geometry and configuration. Partition of the total rolling force between roll-strip contact and roll edge contact in underface rolling is also determined. Since interroll heat transfer is dependent on contact area, and hence, pressure, the results can also aid the determination of lateral temperature distributions in the rolls. In addition, the method is potentially useful for a study of the influence of roll geometry and configuration on strip shape.


2012 ◽  
Vol 706-709 ◽  
pp. 1421-1426
Author(s):  
Zheng Yi Jiang ◽  
Xiao Wei Cheng ◽  
Xiao Zhong Du ◽  
Dong Bin Wei ◽  
Xiao Feng He

In this paper, finite element models of the strip shape during cold rolling of ultra thin strip in both symmetrical and asymmetrical rolling cases have been successfully developed, and the strip shape such as the thickness distribution along the strip width has been obtained. The strip shape and edge drop are discussed under both symmetrical and asymmetrical rolling conditions. Simulation results show that the asymmetrical rolling can reduce strip edge drop dramatically. The work roll edge curve also affects strip shape significantly. The developed finite element model has been verified with the experimental values.


2020 ◽  
Author(s):  
Zhu-Wen Yan ◽  
Bao-Sheng Wang ◽  
He-Nan Bu ◽  
Hao Li ◽  
Lei Hong ◽  
...  

Abstract Through taking the cold rolling process as the research object, the three-dimensional finite element model of the strip rolling process is established by using ANSYS/LS-DYNA software. The simulation results of the finite element model have a good fit with the actual production data. The rolling process is dynamically simulated, and the distribution curves of important rolling parameters such as equivalent stress, control efficiency coefficient, transverse rolling pressure, lateral thickness and work roll deflection is obtained. The research results of this paper have strong practicability for the process control of cold strip rolling mill. The research results have certain guiding significance for the development and optimization of the rolling control system.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Guangxu Zhang ◽  
Jiahan Bao ◽  
Wenhao Li ◽  
Zhichong Wang ◽  
Xiangshuai Meng

It is important to study the vibration of rolling mills to improve the stability of rolling production. A dynamic rolling process model is established by considering the elastic recovery of the exit strip and the influence of multiroll equilibrium, and the accuracy of the model is verified by experimental data. On this basis, based on the distribution of friction force in the deformation zone, the rolling force and rolling torque are nonlinearized. In addition, a rolling mill structure model is established by considering the structure gap and a piecewise nonlinear horizontal-vertical-torsional vibration model of the rolling mill is established by combining the structure model and dynamic rolling process model. Finally, the amplitude-frequency characteristics of the work roll under different external excitation amplitude and the dynamic bifurcation characteristics of the work roll under different gaps are analyzed. The study indicates that, by reducing excitation amplitude and structure gap, the system vibration can be reduced. The research results can provide a theoretical reference for further exploration of the coupling vibration of hot rolling mills.


Sign in / Sign up

Export Citation Format

Share Document