scholarly journals Coupled Vibration Characteristics Analysis of Hot Rolling Mill with Structural Gap

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Guangxu Zhang ◽  
Jiahan Bao ◽  
Wenhao Li ◽  
Zhichong Wang ◽  
Xiangshuai Meng

It is important to study the vibration of rolling mills to improve the stability of rolling production. A dynamic rolling process model is established by considering the elastic recovery of the exit strip and the influence of multiroll equilibrium, and the accuracy of the model is verified by experimental data. On this basis, based on the distribution of friction force in the deformation zone, the rolling force and rolling torque are nonlinearized. In addition, a rolling mill structure model is established by considering the structure gap and a piecewise nonlinear horizontal-vertical-torsional vibration model of the rolling mill is established by combining the structure model and dynamic rolling process model. Finally, the amplitude-frequency characteristics of the work roll under different external excitation amplitude and the dynamic bifurcation characteristics of the work roll under different gaps are analyzed. The study indicates that, by reducing excitation amplitude and structure gap, the system vibration can be reduced. The research results can provide a theoretical reference for further exploration of the coupling vibration of hot rolling mills.

2016 ◽  
Vol 2016 ◽  
pp. 1-26 ◽  
Author(s):  
Lingqiang Zeng ◽  
Yong Zang ◽  
Zhiying Gao

An effective dynamic model is the basis for studying rolling mill vibration. Through analyzing characteristics of different types of vibration, a coupling vibration structure model is established, in which vertical vibration, horizontal vibration, and torsional vibration can be well indicated. In addition, based on the Bland-Ford-Hill rolling force model, a dynamic rolling process model is formulated. On this basis, the rolling mill vertical-torsional-horizontal coupled dynamic model is constructed by coupling the rolling process model and the mill structure model. According to this mathematical model, the critical rolling speed is determined and the accuracy of calculated results is verified by experimental data. Then, the interactions between different subsystems are demonstrated by dynamic responses in both time and frequency domains. Finally, the influences of process parameters and structure parameters on system stability are analyzed. And a series of experiments are conducted to verify the correctness of these analysis conclusions. The results show that the vertical-torsional-horizontal coupled model can reasonably characterize the coupling relationship between the mill structure and the rolling process. These studies are helpful for formulating a reasonable technological procedure of the rolling process and determining a feasible dynamic modification strategy of the structure as well.


1995 ◽  
Vol 117 (3) ◽  
pp. 341-346 ◽  
Author(s):  
Zone-Ching Lin ◽  
Y. C. Cheng

The paper is an investigation of strip curvature caused by the different speeds between the upper work roll and the lower work roll in the rolling process for an aluminum strip. At the same time, we analyzed the variations in the temperature field and strain field, and used a method of speeds variation of the upper and lower work rolls to calibrate the deformation curvature caused by the coolant condition in the hot rolling process. Based on the large deformation-large strain theory, and by means of the Updated Lagrangean Formulation (ULF) and increment theory, a coupled thermoelastic-plastic analysis model for hot rolling process is thus constructed. At the same time the finite difference method was also used to solve the transient heat transfer equation. Finally, the numerical analysis method developed in this study was employed to analyze the changes in the aluminum strip’s temperature and other changes during rolling. In addition, the average rolling force obtained from the simulation was compared with that from the experiments. It verified that the model in this study is reasonable.


2013 ◽  
Vol 773-774 ◽  
pp. 70-78 ◽  
Author(s):  
Abdulrahman Aljabri ◽  
Zheng Yi Jiang ◽  
Dong Bin Wei ◽  
Xiao Dong Wang ◽  
Hasan Tibar

Controlling cold strip profile is a difficult and significant problem has been found in industry during thin strip rolling. At present choosing the new type of strip rolling mill is the one of main methods to control the strip shape quality in cold rolling. The influences of rolling process parameters such as the work roll cross angle and work roll shifting on the strip shape and profile of thin strip are recognised throughout this study. The results show that the roll crossing and shifting is efficient way to control the strip shape. The increase of the work roll crossing angle would lead to improve the strip profile significantly by decreasing the exit strip crown and edge drop. The strip profile would be enhanced if the axial roll shifting was increased. Moreover, the total rolling force was analysed in detail by changing the roll cross angle and axial shifting roll.


2016 ◽  
Vol 874 ◽  
pp. 381-386 ◽  
Author(s):  
Wen Zhen Xia ◽  
Jing Wei Zhao ◽  
Hui Wu ◽  
Si Hai Jiao ◽  
Zheng Yi Jiang

Oxide scale formed on the steel surface during hot rolling affects the tribological property of nanoTiO2 additive oil-in-water (O/W) lubricant, resulting in changes of roll forces, torques and power consumption, as well as the wear and the surface quality of the work roll and workpiece in hot rolling. The nanoparticle additive O/W emulsion is a novel lubricant and has a great potential to be used in hot rolling process. However, little research has focused on the nanoparticle additive O/W emulsion. In this study, oxidation, tribological and hot rolling tests were conducted to investigate the tribological behaviour of nanoTiO2 additive O/W lubricant. The results indicate that the surface morphology of the oxide scale plays an important role in tribological behaviour of nanoTiO2 additive O/W lubricants. The coefficient of friction (COF) and rolling force are reduced with the addition of nanoTiO2 particles into the 1.0% (mass %, oil concentration) O/W lubricant. This study is helpful in applying the nanoTiO2 additive O/W lubricant during hot rolling to realise reduction of rolling force and power consumption.


2012 ◽  
Vol 442 ◽  
pp. 366-369
Author(s):  
Liang Gui Peng ◽  
Xian Lei Hu ◽  
Xu Li ◽  
Dian Hua Zhang ◽  
Gui Ling Yang ◽  
...  

To integrate a new roll gap lubrication system into an existing hot strip mill is a challenge problem. A lubrication expert system was developed and embedded into finish rolling setup system. The reference value setup by expert system is downloaded to roll bite lubrication PLC via finish mill PLC to open oil spraying valve and regulate the oil concentration. Oil spraying time sequence is an important factor to make good lubrication effect and to keep the rolling process stable. Since online application of the hot rolling lubrication system, rolling force and work roll wear has been reduced dramatically, especially rolling thin strip.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1346
Author(s):  
Yanbo Yang ◽  
Yan Peng

At present, the commonly used hot rolling model is only applicable to the static rolling process. However, to study the dynamic rolling process, a dynamic rolling model with roll vertical movement velocity parameters is required. In this study, the influence of the vertical movement velocity of the rolls on the rolling process is considered, and a dynamic rolling process model is proposed when the roll gap is reduced during the hot rolling dynamic rolling process. Mathematically, the model is based on the upper limit method. The model considers the influence of the dynamic rolling process on the length of the deformation zone, establishes a dynamic velocity field model and an average deformation rate model, and then solves the total power of the rolling process. Finally, the dynamic rolling force equation is given. Compared with the experimental results, the dynamic rolling model in this paper has high accuracy with an average error of 4%. In addition, the influence of roll vertical velocity on rolling parameters is discussed, which provides a basis for the study of the dynamic rolling process.


2020 ◽  
Vol 14 ◽  
Author(s):  
Xiao-bin Fan ◽  
Hao Li ◽  
Yu Jiang ◽  
Bing-xu Fan ◽  
Liang-jing Li

Background: Rolling mill vibration mechanism is very complex, and people haven't found a satisfactory vibration control method. Rolling interface is one of the vibration sources of the rolling mill system, and its friction and lubrication state has a great impact on the vibration of the rolling mill system. It is necessary to establish an accurate friction model for unsteady lubrication process of roll gap and a nonlinear vibration dynamic model for rolling process. In addition, it is necessary to obtain more direct and real rolling mill vibration characteristics from the measured vibration signals, and then study the vibration suppression method and design the vibration suppression device. Methods: This paper summarizes the friction lubrication characteristics of rolling interface and its influence on rolling mill vibration, as well as the dynamic friction model of rolling interface, the tribological model of unsteady lubrication process of roll gap, the non-linear vibration dynamic model of rolling process, the random and non-stationary dynamic behavior of rolling mill vibration, etc. At the same time, the research status of rolling mill vibration testing technology and vibration suppression methods were summarized. Time-frequency analysis of non-stationary vibration signals was reviewed, such as wavelet transform, Wigner-Ville distribution, empirical mode decomposition, blind source signal extraction, rolling vibration suppression equipment development. Results: The lubrication interface of the roller gap under vibration state presents unsteady dynamic characteristics. The signals generated by the vibration must be analyzed in time and frequency simultaneously. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. When designing or upgrading the mill structure, it is necessary to optimize the structure of the work roll bending and roll shifting system, such as designing and developing the automatic adjustment mechanism of the gap between the roller bearing seat and the mill stand, adding floating support device to the drum shaped toothed joint shaft, etc. In terms of rolling technology, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, reducing rolling force of vibration prone rolling mill, increasing entrance temperature, reducing rolling inlet tension, reducing strip outlet temperature and reasonably arranging roll diameter. The coupling vibration can also be suppressed by optimizing the hydraulic servo system and the frequency conversion control of the motor. Conclusion: Under the vibration state, the lubrication interface of roll gap presents unsteady dynamic characteristics. The signal generated by vibration must be analyzed by time-frequency distribution. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. It is necessary to optimize the structure of work roll bending and roll shifting system when designing or reforming the mill structure. In rolling process, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, increasing billet temperature, reasonably arranging roll diameter and reducing rolling inlet tension. Through the optimization of the hydraulic servo system and the frequency conversion control of the motor, the coupling vibration can be suppressed. The paper has important reference significance for vibration suppression of continuous rolling mill and efficient production of high quality strip products.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 869
Author(s):  
Rongrong Peng ◽  
Xingzhong Zhang ◽  
Peiming Shi

Based on the analysis of the influence of roll vibration on the elastoplastic deformation state of a workpiece in a rolling process, a dynamic rolling force model with the hysteresis effect is established. Taking the rolling parameters of a 1780 mm hot rolling mill as an example, we analyzed the hysteresis between the dynamic rolling force and the roll vibration displacement by varying the rolling speed, roll radius, entry thickness, front tension, back tension, and strip width. Under the effect of the dynamic rolling force and considering the nonlinear effect between the backup and work rolls as well as the structural constraints on the rolling mill, a hysteretic nonlinear vertical vibration model of a four-high hot rolling mill was established. The amplitude-frequency equations corresponding to 1/2 subharmonic resonance and 1:1 internal resonance of the rolling mill rolls were obtained using a multi-scale approximation method. The amplitude-frequency characteristics of the rolling mill vibration system with different parameters were studied through a numerical simulation. The parametric stiffness and nonlinear stiffness corresponding to the dynamic rolling force were found to have a significant influence on the amplitude of the subharmonic resonance system, the bending degree of the vibration curve, and the size of the resonance region. Moreover, with the change in the parametric stiffness, the internal resonance exhibited an evident jump phenomenon. Finally, the chaotic characteristics of the rolling mill vibration system were studied, and the dynamic behavior of the vibration system was analyzed and verified using a bifurcation diagram, maximum Lyapunov exponent, phase trajectory, and Poincare section. Our research provides a theoretical reference for eliminating and suppressing the chatter in rolling mills subjected to an elastoplastic hysteresis deformation.


2014 ◽  
Vol 989-994 ◽  
pp. 3386-3389
Author(s):  
Zhu Wen Yan ◽  
Hen An Bu ◽  
Dian Hua Zhang ◽  
Jie Sun

The influence on the shape of the strip from rolling force fluctuations has been analyzed. The combination of intermediate roll bending and work roll bending has been adopted. The principle of rolling force feed-forward control has been analyzed. The feed-forward control model has been established on the basis of neural networks. The model has been successfully applied to a rolling mill and a good effect has been achieved.


2010 ◽  
Vol 2 (1) ◽  
pp. 707-716 ◽  
Author(s):  
D. Benasciutti ◽  
E. Brusa ◽  
G. Bazzaro

Sign in / Sign up

Export Citation Format

Share Document