scholarly journals Friction Stir Welding of an Al-Mg-Sc-Zr Alloy with Ultra-Fined Grained Structure

2014 ◽  
Vol 794-796 ◽  
pp. 365-370
Author(s):  
Sergey Malopheyev ◽  
Sergey Mironov ◽  
Vladislav Kulitskiy ◽  
Rustam Kaibyshev

Effect of friction stir welding (FSW) on mechanical properties and microstructure of Al-5.4Mg-0.2Sc-0.1Zr sheets with ultra-fined grained (UFG) structure was studied. The UFG-sheets were produced by equal-channel angular pressing (ECAP) followed either by cold or hot rolling. FSW was found to be very effective for retaining the UFG microstructure as well as constituent coherent nano-scale dispersoids in the welded material. Despite the preservation effect, however, the essential material softening was observed in the weld zone. This was attributed to the recrystallization occurring during FSW. The joint efficiency for yield strength of the obtained friction stir welds was found to be 81% in the hot rolled condition and only 55% in the cold rolled state. The relatively low joint efficiency was associated with the recrystallization softening as well as with the formation of a specific “kissing bond” defect in the stir zone. The joint efficiency is believed may be improved by adjusting of welding conditions and/or tool design.

2014 ◽  
Vol 922 ◽  
pp. 463-468
Author(s):  
Sergey Malopheyev ◽  
Vladislav Kulitskiy ◽  
Sergey Mironov ◽  
Daria Zhemchuzhnikova ◽  
Rustam Kaibyshev

The microstructure and mechanical properties of friction stir welded Al-5.4Mg-0.2Sc-0.1Zr alloy were studied. Defect-free welds were produced in hot extruded, hot rolled and cold rolled initial conditions. Friction stir welding led to the formation of ultrafine-grained structure in stir zone that contributes to overall strengthening. Coherent Al3(Sc,Zr) dispersoids retain partially during welding process that provides a joint efficiency close to 100% in the hot extruded and hot rolled materials. In the cold-rolled state the joint efficiency was found to be only 64%. The relatively low weld strength of the cold rolled material was attributed to the elimination of strain hardening due to the formation of recrystallized structure. It was shown that full strength weld can be achieved in semi-finished products of Al-Mg-Sc alloys in cold-worked and stabilized states being equal to H323 and H341 tempering by friction stir welding.


2016 ◽  
Vol 877 ◽  
pp. 365-370
Author(s):  
Sergey Malopheyev ◽  
Sergey Mironov ◽  
Rustam Kaibyshev

The effect of friction-stir welding (FSW) on microstructure and mechanical properties of Zr-modified AA5083 aluminum alloy was studied. FSW was observed to lead to the formation of fully recrystallized ultrafine-grained microstructures and preservation of nanoscale dispersoids in stir zone. The joint efficiency of the friction-stir welds for ultimate tensile strength was found to be 94% and 74% in the hot-rolled and cold-rolled preprocessed material conditions. The stir zone microstructure was predicted to be stable against abnormal grain growth during post-weld heat treatment.


2016 ◽  
Vol 857 ◽  
pp. 266-270 ◽  
Author(s):  
Ho Sung Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Kyung Ju Min

Aluminum-copper-lithium alloy is a light weight metal that has been used as substitute for conventional aerospace aluminum alloys. With addition of Li element, it has lower density but higher strength. However these aluminum alloys are hard to weld by conventional fusion welding, since they often produce porosities and cracking in the weld zone. It is known that solid state welding like friction stir welding is appropriate for joining of this alloy. In this study, friction stir welding was performed on AA2195 sheets, in butt joint configuration in order to understand effects of process parameters on microstructure and mechanical properties in the weld zone. The results include the microstructural change after friction stir welding with electron microscopic analysis of precipitates.


2012 ◽  
Vol 602-604 ◽  
pp. 608-611
Author(s):  
Di Qiu He ◽  
Rui Lin Lai ◽  
Shao Hua Xu ◽  
Kun Yu Yang ◽  
Shao Yong Ye ◽  
...  

In this study, Cu-Cr-Zr alloy joints are successfully fabricated by friction stir welding (FSW). Defect-free weld are produced on 12mm thick Cu-Cr-Zr alloy plate useing a non-consumable tool with a specially designed and shoulder with a constant rotation speed and a fixed traverse speed. The effect of friction stir welding (FSW) on the microstructure and mechanical properties of Cu-Cr-Zr alloy joints are investigated in details: The joints showed the presence of various zones such as nugget zone (NZ) and thermo-mechanically affected zone (TMAZ) and base metal (BM), the microhardness and the tensile strength of welded joints are lower than that of the base material.


Author(s):  
Md. Aleem Pasha ◽  
Dr. P. Ravinder Reddy ◽  
Dr. P. Laxminarayana ◽  
Dr. Ishtiaq Ahmad Khan

<div><p><em>Welding of magnesium alloys influence a great effect on magnesium application expansion, especially in marine and aerospace where large-size, complex components are required. Due to specific physical properties of magnesium, its welding requires great control. In general, the solid-state nature of friction stir welding (FSW) process has been found to produce a low concentration of defects. Mechanical properties of  friction stir welded joints are decreases than base material, so to enhance the mechanical properties of welded portion, In the present research additional SiC particulates were incorporated in the weld interface of friction stir welding of Magnesium alloy AZ31B. Silicon Carbide has been added as reinforcement by creating separate geometry, at the edges where the welding is interface with 4 different volume proportions such as 10%, 15%, 25% and 30%. Tool Steel of H13 grade has been used as friction stir welding tool. Rotational Speed of 1400 RPM and Transverse Speed of 25 mm/min were selected. Joined Mg Alloy AZ31B alloy plates were evaluated for their mechanical properties under two different conditions, i.e in the un-reinforced welded condition and reinforced welded conditions. The results of the study revealed that the mechanical properties of the SiC particulates added Mg alloy AZ31B welded joints are superior in all four proportions of SiC, compared to un-reinforced Mg alloy AZ31B welded joints. Microstructural examination of the welded joints was conducted using Optical microscope and revealed that distribution of SiC particles producing increased weld strength. The comparison of the microstructures and mechanical properties of unreinforced Friction stir welded AZ31 with those of SiC reinforced FS-welded joints showed that the addition of SiC particles decreased the grain size and increased the strength.</em></p></div>


2019 ◽  
Vol 969 ◽  
pp. 720-726
Author(s):  
Ajay Kumar Revelly ◽  
B. Rajkumar ◽  
V. Swapna

The main aim of the present topic is friction stir welding (FSW) of Aluminium HE-30, which shows that improved microstructures, strong weld and with less of defects. In the other hand, an attempt was made to correlate the welding parameters and mechanical properties. In the present investigation four rotational speeds of 1000 rpm, 1200 rpm, 1400 rpm and 1600 rpm with travelling speed of 30 mm/min. and tool geometry (straight cylindrical) was chosen. It was observed that the tool rotational speed is a sensitive parameter to decide the ultimate tensile strength and yield strength of the present material. Similarly, the hardness of Al plates is improved at the weld zone. Hence, it is suggested that to consider a parameter such as welding tool rotational speed, travelling speed and materials in selecting the welding methods of sound joints, because it influences the microstructure and mechanical properties in various applications. In the present study, non-destructive tests are also confirmed the defective nature of the weld zone of Al plates.


Author(s):  
A.A. Saleh

Purpose: This work aims to investigate the microstructure and mechanical properties achieved by FSW of butt joints, namely of dissimilar sheets namely of 2014-T3 to 5059-H11 Al alloys by bonding the two materials perpendicular to their rolling directions. Design/methodology/approach: AA 2014T3 and AA 5059H11 were two dissimilar aluminium alloys friction stir welded. The joint has been examined in terms of hardness, microstructure, and mechanical properties. The microstructure of the weld area was characterized by using optical microscopy. Seven diverse regions of the microstructure in the joint can be illustrious. Findings: It has been noticed that a structure of fine grain is formed in the nugget region as a consequence of recrystallization. The thermos mechanically affected and heat affected zones of aluminium alloy 2014 are characterized by the lowest hardness values in spite of there are a general hardness decrease through the weld zone compared to both base metals. The ultimate tensile strength values of the dissimilar joint were found to be varying between 54% to 66% those of the base metal. Research limitations/implications: The t joining in FSW takes place with the base materials remnant in the solid state, which gives a considerable possibility to produce joints between the alleged difficult-to-weld heat treatable aluminium alloys. Originality/value: The outcomes display that friction stir welding can be effectively applied for the joining of dissimilar aluminium alloys.


2014 ◽  
Vol 794-796 ◽  
pp. 331-336 ◽  
Author(s):  
Daria Zhemchuzhnikova ◽  
Rustam Kaibyshev

An aluminum alloy with a chemical composition of Al–6%Mg–0.35%Mn–0.2%Sc–0.08%Zr–0.07%Cr (in wt.) was rolled up to different reductions of 75, 88 and 95% at 360oC and at ambient temperature. The static mechanical properties and the high-cyclic fatigue (HCF) life were examined. It was shown that the hot rolling results in increased yield stress (YS) and ultimate tensile strength (UTS). However, ductility and fatigue limit of the hot rolled alloy and initial as-cast ingot are nearly the same. The combination of hot and cold rolling leads to significant improvement of tensile strength and fatigue resistance, while ductility tends to reduce with increasing the rolling reduction. The cold rolled alloy exhibits the endurance limit under fatigue conditions, while the alloy in the both as-cast and hot rolled conditions exhibits only fatigue strength. The effect of the deformation structure on the mechanical properties is discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bhanodaya Kiran Babu Nadikudi

PurposeThe main purpose of the present work is to study the effect of tool pin profiles on mechanical properties of welded plates made with two different aluminium alloy plates.Design/methodology/approachThe welded plates were fabricated with the three different kinds of pin profiled tools such as taper cylindrical, taper threaded cylindrical and stepped cylindrical pin profiles. Tensile properties of welded plates were evaluated using tensile testing machine at room temperature. Microstructures studies were carried out using scanning electron microscope.FindingsTensile properties were improved with the use of taper threaded cylindrical pin tool in friction stir welding process when compared with taper cylindrical and stepped cylindrical pin tools. This is due to refinement of grains and mixing of plasticized material occurred with generation of sufficient heat with the taper threaded pin tool. Through these studies, it was confirmed that friction stir welding can be used to weld Al6061 and Al2014 aluminium alloy plates.Research limitations/implicationsIn the present study, the friction stir welding is performed with constant process parameters such as tool rotational speed of 900 rpm, transverse speed of 24 mm/min and tilt angle of 1°.Practical implicationsAluminium alloys are widely using in automotive and aerospace industries due to holding a high strength to weight property. These aluminium alloy blanks can be developed with friction stir welding method with better properties.Originality/valueVery limited work had been carried out on friction stir welding of aluminium alloys of Al 6061 and Al2014 with different tool pin profiles. Furthermore, this work analyzed with tensile properties of welded plates correlated with weld zone microstructures.


Sign in / Sign up

Export Citation Format

Share Document