Characteristics of MSWI Ash and its Application to Zeolite Synthesis

2014 ◽  
Vol 804 ◽  
pp. 93-96 ◽  
Author(s):  
Yeong Seok Yoo ◽  
Jun Ho Jo

In this study, composition for bottom ash and fly ash of MSWI was analyzed and zeolite was synthesized in order to expand its recycling on high quality and mass consumption. Analysis of ash its characteristics was performed by XRF, XRD, SEM, EDX, TG/DTA. Bottom/fly ash was fired for elimination of unburned carbon at 750°C/12 hr, crushed and synthesized to zeolite in 1, 2, 3, 4, 5 M NaOH solutions under 105°C/24hr by hydrothermal method. Calcite and calcium-silicate compound was mainly contained in bottom ash and CaCl2∙4H2O, Ca (OH)2, NaCl, and calcite and KCl in fly ash. Especially amount of Cl was much contained in fly ash due to Korean food waste characteristics. Bottom ash could synthesize Zeolites in form of sodalite under 3~4 M NaOH and fly ash could synthesize Zeolite A under 1~2 M NaOH. In addition, zeolite synthesized with bottom ash had higher specific surface area and zeolite from fly ash had higher CEC value. Accordingly, ash from MSWI could be recycled for further valuable uses such as non-point pollutant control and/or soil amendment.

2020 ◽  
Author(s):  
Seok Un Park ◽  
Jae Kwan Kim ◽  
Dong Ik Shin

Abstract In this study, we examined the physical chemistry, fuel characteristics and combustion reactivity of high carbon ash as a raw material for spontaneous combustion inhibitor in order to solve the problem of spontaneous combustion which has been often occurring in coal yard of coal-fired power plants in Korea. The high carbon ash has higher activation energy and lower frequency factor than bituminous coal, so combustion began at a relatively higher temperature than bituminous coal. In case of fly ash, the heat transfer characteristics were better than those of bottom ash and pond ash, and in case of coarse particles of fly ash, they were found to be highly applicable as a raw material for spontaneous combustion inhibitor due to their relatively high unburned carbon content. As a result of manufacturing spontaneous combustion inhibitors along with asphalt and PFAD (palm fatty acid distillate), the contact angle to water was more than 90° regardless of the mixing ratio, showing hydrophobic surface characteristics, and it was found that the hardness and viscosity of spontaneous combustion inhibitors increased as the mixing ratio of high carbon ash increased. In addition, when spontaneous combustion inhibitors manufactured were applied to coal stockpiles in coal yard at coal-fired power plants, there was little change in the internal temperature of coal stockpiles and the highest value of instantaneous increasing rate per minute was found to be lowered from 1.60°C/min to 0.061°C/min, indicating that spontaneous combustion inhibitors using high carbon coal ash had a great effect of preventing spontaneous combustion.


2021 ◽  
Vol 16 (1) ◽  
pp. 53-70
Author(s):  
Ferian Anggara ◽  
Himawan T.B.M Petrus ◽  
Dea Anisa Ayu Besari ◽  
Hotden Manurung ◽  
Febry Yulindra Abdi Saputra
Keyword(s):  
Fly Ash ◽  

Fly ash dan bottom ash (FABA) merupakan limbah hasil sisa pembakaran batubara dari pembangkit listrik tenaga uap (PLTU). FABA yang dihasilkan akan terus meningkat seiring dengan meningkatnya kebutuhan energi listrik yang harus dipenuhi. Komposisi FABA secara umum berupa silika, alumina, oksida besi, dan senyawa oksida lainnya. Abu yang dihasilkan dari pembakaran batubara berpotensi secara ekonomis karena mengandung beberapa unsur berharga antara lain Ge, Ga, unsur tanah jarang (REY), Nb, Zr, V, Re, Au, Ag, dan logam dasar seperti Al. Karakteristik fisik dan kimia FABA merupakan aspek penting yang dapat memengaruhi, baik potensi penggunaan maupun metode pembuangan atau penyimpanan limbah yang akan dilakukan. Potensi pemanfaatan FABA telah banyak digunakan pada bidang geoteknik, salah satunya diaplikasikan sebagai material geopolimer. Selain itu, FABA juga mengandung cenosphere yang merupakan salah satu material bernilai ekonomis tinggi dan telah banyak diaplikasikan pada berbagai bidang industri. Berbagai teknik pemisahan material untuk meningkatkan potensi nilai guna FABA telah berhasil dikembangkan, antara lain metode ektraksi cenosphere, logam berharga serta unsur jejak seperti REY, juga unburned carbon.


2018 ◽  
Vol 271 ◽  
pp. 1-8 ◽  
Author(s):  
Ulambayar Rentsenorov ◽  
Batmunkh Davaabal ◽  
Jadambaa Temuujin

Raw coal fly ash and acid pretreated fly ash were used to synthesize A-type zeolite by hydrothermal treatment. In order to synthesize zeolite A an aqueous gel having a molar batch composition of Na2O:Al2O3:1.926SiO2:128H2O was utilized. Fly ash and zeolitic products were characterized by SEM, XRF, XRD and cation exchange capacity (CEC). After hydrothermal treatment, several types of zeolites were formed: zeolite A, analcime, faujasite and hydroxy-sodalite. The highest content of zeolite A was formed in the mixture treated at 80°C for 8 hours. CEC values of the zeolitic products were 28-38 times higher than that of in raw fly ash. Acid pretreatment which leads to low calcium and iron content is preferable method for processing of fly ash for the zeolite synthesis. Synthesized zeolite can be used for ion exchangers for water treatment.


2020 ◽  
Vol 849 ◽  
pp. 108-112
Author(s):  
Widi Astuti ◽  
Agus Haerudin ◽  
Istihanah Nurul Eskani ◽  
Fajar Nurjaman ◽  
Aulia Pertiwi Tri Yuda ◽  
...  

Indonesia coal ash is predicted to reach 10.8 million tons in the year 2020 but its utilization is still limited. In the last decade, coal ash has become a promising REY source candidate. To determine the potency of REY in Indonesia coal ash, information about element concentration and mineralogy of the ash is essential. In this study, coal ash samples were taken from Paiton-2, Pacitan, Rembang, and Tanjung Jati coal-fired power plants. Element content and mineralogy were analyzed using Inductive Couple Plasma Mass Spectroscopy/Atomic Emission Spectroscopy (ICP-MS/AES), X-Ray Diffractometer (XRD) and petrographic. The results showed that coal fly ash and bottom ash contains critical REY in the range of 38% to 41% with Coutlook larger than one. XRD analysis showed that both fly ash and bottom ash have similar mineral phases with slightly different concentrations. The mineral phase is dominated by amorphous glass, quartz, Fe-bearing minerals, and unburned carbon. The amorphous glass phase in fly ash is in the range of 23 to 34% while in bottom ash between 14 and 34%. Unburned carbon content in fly ash and bottom ashes are 7-13% and 7-19%, respectively. Fe-bearing mineral content in fly ash is 15-20% and bottom ash is 13-20%. In addition, Indonesia coal ash has a higher Heavy-REY enrichment factor than Light-REY. The Enrichment Factor of HREY in fly ash is as much as 1.3 times (in average) of the bottom ash.


2020 ◽  
Vol 849 ◽  
pp. 102-107
Author(s):  
Widya Rosita ◽  
Dea Anisa Ayu Besari ◽  
I Made Bendiyasa ◽  
Indra Perdana ◽  
Ferian Anggara ◽  
...  

Indonesia coal ash is predicted to reach 10.8 million tons in the year 2020 but its utilization is still limited. In the last decade, coal ash has become a promising REY source candidate. To determine the potency of REY in Indonesia coal ash, information about element concentration and mineralogy of the ash is essential. In this study, coal ash samples were taken from Paiton-2, Pacitan, Rembang, and Tanjung Jati coal-fired power plants. Element content and mineralogy were analyzed using Inductive Couple Plasma Mass Spectroscopy/Atomic Emission Spectroscopy (ICP-MS/AES), X-Ray Diffractometer (XRD) and petrographic. The results showed that coal fly ash and bottom ash contains critical REY in the range of 38% to 41% with Coutlook larger than one. XRD analysis showed that both fly ash and bottom ash have similar mineral phases with slightly different concentrations. The mineral phase is dominated by amorphous glass, quartz, Fe-bearing minerals, and unburned carbon. The amorphous glass phase in fly ash is in the range of 23 to 34% while in bottom ash between 14 and 34%. Unburned carbon content in fly ash and bottom ashes are 7-13% and 7-19%, respectively. Fe-bearing mineral content in fly ash is 15-20% and bottom ash is 13-20%. In addition, Indonesia coal ash has a higher Heavy-REY enrichment factor than Light-REY. The Enrichment Factor of HREY in fly ash is as much as 1.3 times (in average) of the bottom ash.


2022 ◽  
Vol 275 ◽  
pp. 125197
Author(s):  
Bruno C. Amoni ◽  
Armando D.L. Freitas ◽  
Raquel A. Bessa ◽  
Cristiane P. Oliveira ◽  
Moisés Bastos-Neto ◽  
...  

Author(s):  
L. L. Sutter ◽  
G. R. Dewey ◽  
J. F. Sandell

Municipal waste combustion typically involves both energy recovery as well as volume reduction of municipal solid waste prior to landfilling. However, due to environmental concerns, municipal waste combustion (MWC) has not been a widely accepted practice. A primary concern is the leaching behavior of MWC ash when it is stored in a landfill. The ash consists of a finely divided fly ash fraction (10% by volume) and a coarser bottom ash (90% by volume). Typically, MWC fly ash fails tests used to evaluate leaching behavior due to high amounts of soluble lead and cadmium species. The focus of this study was to identify specific lead bearing phases in MWC fly ash. Detailed information regarding lead speciation is necessary to completely understand the leaching behavior of MWC ash.


2019 ◽  
Vol 13 ◽  
Author(s):  
Haisheng Li ◽  
Wenping Wang ◽  
Yinghua Chen ◽  
Xinxi Zhang ◽  
Chaoyong Li

Background: The fly ash produced by coal-fired power plants is an industrial waste. The environmental pollution problems caused by fly ash have been widely of public environmental concern. As a waste of recoverable resources, it can be used in the field of building materials, agricultural fertilizers, environmental materials, new materials, etc. Unburned carbon content in fly ash has an influence on the performance of resource reuse products. Therefore, it is the key to remove unburned carbon from fly ash. As a physical method, triboelectrostatic separation technology has been widely used because of obvious advantages, such as high-efficiency, simple process, high reliability, without water resources consumption and secondary pollution. Objective: The related patents of fly ash triboelectrostatic separation had been reviewed. The structural characteristics and working principle of these patents are analyzed in detail. The results can provide some meaningful references for the improvement of separation efficiency and optimal design. Methods: Based on the comparative analysis for the latest patents related to fly ash triboelectrostatic separation, the future development is presented. Results: The patents focused on the charging efficiency and separation efficiency. Studies show that remarkable improvements have been achieved for the fly ash triboelectrostatic separation. Some patents have been used in industrial production. Conclusion: According to the current technology status, the researches related to process optimization and anti-interference ability will be beneficial to overcome the influence of operating conditions and complex environment, and meet system security requirements. The intelligent control can not only ensure the process continuity and stability, but also realize the efficient operation and management automatically. Meanwhile, the researchers should pay more attention to the resource utilization of fly ash processed by triboelectrostatic separation.


Sign in / Sign up

Export Citation Format

Share Document