Biomass Reduction Roasting-Magnetic Separation of Low Grade Goethite

2015 ◽  
Vol 814 ◽  
pp. 235-240 ◽  
Author(s):  
Qiu Yue Wang ◽  
Yan Wu ◽  
Yong Huo Li ◽  
Xiang Yang

The average grade of iron ores in China is around 32%, about 10% lower than the world’s average level. In order to alleviate the demand of iron ore for steelmaking industries, it is urgent to develop a highly efficient, energy-saving, low-carbon and environment-friendly technology. The goethite ore from Northern Hainan Island was studied via reduction magnetization by pine, rice chaff, and corn straw biomass fuels. The magnetic properties and magnetic separation were discussed by optimizing the parameters of roasting temperature, roasting time, and the ratio of biomass fuels. The results show that we could obtain concentrated iron ore grade of pine roasting and magnetic separation grade of iron concentrate 61.64% with the recovery of 79.75% via pine fuel roasting, 61.75% with the recovery 80.16% via rice chaff, and 61.47% with the recovery of 81.28% via corn straw roasting. Thereby, we could deduce that biomass fuels for reduction roasting of low goethite ore is promising to substitute the traditional coal and coke fossil fuels.

2014 ◽  
Vol 49 (12) ◽  
pp. 1927-1936 ◽  
Author(s):  
S. S. Rath ◽  
H. Sahoo ◽  
N. Dhawan ◽  
D. S. Rao ◽  
B. Das ◽  
...  

2013 ◽  
Vol 826 ◽  
pp. 102-105
Author(s):  
Ji Wei Lu ◽  
Nai Ling Wang ◽  
Wan Zhong Yin ◽  
Rui Chao Zhao ◽  
Chuang Yuan

For the middlings (containing siderite) separated from Dong Anshan carbonaceous iron ore which was dressed by a two-step flotation process, using roasting-magnetic and regrinding-magnetic separation, the iron concentrate with iron grade and iron recovery of 60.31%, 87.49% was obtained. Mechanism of reduction-roasting was studied by means of XRD in the end.


2013 ◽  
Vol 641-642 ◽  
pp. 377-380
Author(s):  
Yi Miao Nie ◽  
Qi Hui Dai ◽  
Xiao Long Lu

Iron ore and tin mineral are the mainly recovered minerals of the low-grade ore, which could be effectively separated by a strong magnetic separation-gravity concentration process, with ore iron grade of 20.3%, tin grade 0.18%. Stage grinding and stage separation was used, getting the grade of iron concentrate and the recovery rate of tin separation index, the feeder of tin was magnetic separation tailing, by shaking table re-election, obtained tin concentrate grade was 10%, production was 0.34% (compared to the original ore, tin dressing) .Tin concentration ratio reached more than 330.


2013 ◽  
Vol 634-638 ◽  
pp. 3273-3276
Author(s):  
Si Qing Liu ◽  
Min Zhang ◽  
Wan Ping Wang ◽  
Xiu Juan Li

In this research, a refractory iron ore is processed, according to the basic facts of mineralogical study. Mineralogy shows that the ore is characterized by the finely disseminated iron minerals with a small amount in the ore. Iron minerals in the ore are mainly hematite and magnetite. On the basis of the ore characteristic, a flowsheet of "stage grinding-low intensity magnetic separation-high intensity magnetic separation-gravity concentration by fine shaking table" was developed. An iron concentrate assaying 51.45% Fe at a recovery of 62.12% was obtained when the raw ore contains 18.61% Fe.


2014 ◽  
Vol 123 (4) ◽  
pp. 212-227 ◽  
Author(s):  
Steven Paul Suthers ◽  
Venkata Nunna ◽  
Avinash Tripathi ◽  
Jeffrey Douglas ◽  
Sarath Hapugoda

2012 ◽  
Vol 535-537 ◽  
pp. 746-749
Author(s):  
Wei Zhi Wang ◽  
Li Ping Chen ◽  
Chun Guang Yang

Test was made on separating iron from a ultra-low-grade vanadium titanium magnetite ore by a process of tailing discarding at a coarser size,staged grinding and staged low intensity magnetic separation. The results show that when the raw ore is treated by permanent dry magnetic separator with low intensity magnetic separation at 12~0 mm size,qualified tailings of about 20% yield can be discarded.The coarse concentrate is grounded in two stages. With the first stage grinding size being 45% -200 mesh and the second stage,75% -200 mesh,and then treated by two stage low intensity magnetic separation.As a result,an iron concentrate with a TFe grade of 65.80%and an iron recovery of 47.74%can be achieved.


2015 ◽  
Vol 1094 ◽  
pp. 397-400
Author(s):  
Xian Xie ◽  
Zi Xuan Yang ◽  
Xiong Tong ◽  
Ji Yong Li

Iron ore minerals are mainly silicate-type iron minerals in raw ore, and its distribution rate was 51.93%; followed by magnetic iron, and its distribution rate was 36.81%; content and distribution rate of other minerals was very low; element grade of iron, phosphorus, sulfur, silica were 11.90%, 0.043%, 0.013% and 45.23%, the main gangue were silica and calcium oxide, recyclable iron minerals mainly is magnetic iron mineral. Due to the grade of iron of raw ore and the amounts of optional magnetite was relatively little, in order to investigate the optional of low-grade ore, weak magnetic separation test and weak magnetic separation tailings-strong magnetic separation test were put into effect.


2013 ◽  
Vol 734-737 ◽  
pp. 1029-1032 ◽  
Author(s):  
Jiang An Chen ◽  
Jun Liu

Considered the properties of limonite ore at Jiangxi, the raw ore pressing ball - direct reduction - magnetic separation flowsheet have been adopted. the pressing ball conditions, the influence factors and the grinding magnetic separation conditions experiments were carried out. The results shown that: When the dosage of coal was 20%, water was 10%, CMC was 0.5%, pressing ball under the pressure of 190 kN, the calcination temperature was 1100 °C, the roasting time is 50 min, roasted ore were magnetic separated after grinded to 85% through 200 mesh screen. the iron concentrate grade of 92.48% and recovery rate of 93.45% were achieved finally.


2012 ◽  
Vol 47 (8) ◽  
pp. 1129-1138 ◽  
Author(s):  
S. I. Angadi ◽  
Ho-Seok Jeon ◽  
A. Mohanthy ◽  
S. Prakash ◽  
B. Das

Sign in / Sign up

Export Citation Format

Share Document