Study on the Lubricating Performance of Nano-TiO2 in Water-Based Cold Rolling Fluid

2015 ◽  
Vol 817 ◽  
pp. 219-224 ◽  
Author(s):  
Jian Lin Sun ◽  
Zuo Xin Zhu ◽  
Peng Fei Xu

A type of water-based cold rolling fluid has been developed by adding TiO2 nanoparticles. The tribological behavior of nanoTiO2 water-based rolling fluid was investigated by using four-ball machine. The worn surfaces of the steel balls were analyzed by using OLYMPUS laser confocal microscopy. Results indicate that nanoTiO2 nanoparticles significantly improved the anti-wear properties in the way of micro-ball bearing and perfecting the tribological behavior of water-based rolling fluid. The cold rolling experiment shows that the nanoTiO2 water-based rolling fluid had a good rolling lubricant performance under the condition of concentration of 0.7wt.% for the upper limit. The nanoTiO2 water-based rolling fluid can not only decrease the minimum rolling gauge and the surface roughness of the work piece, but also prevent direct contact between roller and work piece which could lead to the rolled surface scratches and adhesion defects.

2011 ◽  
Vol 337 ◽  
pp. 550-555 ◽  
Author(s):  
Bing Wang ◽  
Jian Lin Sun ◽  
Yuan Yuan Wu

The non-parathion nano organic molybdenum (Nano-Mo) was adopted to substitute for the conventional extreme-pressure and anti-wear additives, uniformly dispersed in water-based cold rolling liquid for steel strips. The tribological properties of the water-based cold rolling liquid were tested by the four-ball machine, and the lubricity of the cold-rolling liquid for steel strip was evaluated on the 4-high cold rolling experiments. Besides, the worn surfaces of the steel balls were observed by an optical microscope. Results indicated that Nano-Mo as additive in water-based cold rolling liquid, compared with the conventional emulsions, PB values was increased by 4%, and friction coefficient and wear scar diameter were decreased by 10.8% and 13.1%, the lubricity of rolling liquid was verified by cold rolling test which showed that this liquid had the excellent lubricant performance to reduce the rolling force, save energy consumption and get thinner strip. Optical microscope was used to observe the strips surface which showed that strip surface streaks were clear, scratches were less and shallow. By roughness test and EDS analysis, defects were filled with nanoparticles, friction and wear were reduced effectively. In addition, tensile properties had been studied after rolling lubrication, but the results showed no significant effect.


Friction ◽  
2021 ◽  
Author(s):  
Weiwei Tang ◽  
Xuejun Zhu ◽  
Yufeng Li

AbstractAdvances in nano-lubricant additives are vital to the pursuit of energy efficiency and sustainable development. Carbon dots (CDs) have been widely investigated in the domain of lubricant additives owing to their extraordinary tribological properties, in particular, their friction-reducing and anti-wear properties. Metal-doped CDs are a new type of CDs, and their friction-reducing and anti-wear properties are attracting increasing attention. Therefore, a series of CDs doped with various divalent metal ions have been successfully synthesized via one-pot pyrolysis. The tribological properties of the synthesized CDs as water-based lubricant additives are in the following order: Zn-CDs > Cu-CDs ≫ Mg-CDs > Fe-CDs > U-CDs. Specifically, adding 1.0 wt% of Zn-CDs into water-based lubricant results in 62.5% friction and 81.8% wear reduction. Meanwhile, the load-carrying capacity of the water-based lubricant increases from 120 N to at least 500 N. Zn-CDs as an additive have long service life. Additionally, anion-tuned Zn-CDs fabricated via anion exchange exhibit promise as lubricant additives for poly(ethylene glycol). Based on the results of wear scar surface analyses, it is discovered that tribochemical films, primarily composed of iron oxides, nitrides, metal carbonates, zinc oxides, zinc carbonates, organic compounds, and embedded carbon cores, formed on the rubbing surfaces with a thickness of approximately 270 nm when Zn-CDs are used as additives. This film combined with the “ball-bearing” and third-particle effects of Zn-CDs contributed to excellent lubrication performance.


RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 44618-44625 ◽  
Author(s):  
Kang Yang ◽  
Xiaoliang Shi ◽  
Wenzheng Zhai ◽  
Long Chen ◽  
Ao Zhang ◽  
...  

Anti-friction film with friction-reduction and anti-wear properties is formed under elastic deformation at the von Mises stress of 917 MPa (at 12 N).


Friction ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 169-178
Author(s):  
Hong Guo ◽  
Patricia Iglesias

Abstract In this study, the tribological behavior of an ammonium-based protic ionic liquid (PIL) as an additive in a base mineral oil (MO) is investigated on a steel-steel contact at room temperature and 100 °C. Tri-[bis(2-hydroxyethylammonium)] citrate (DCi) was synthesized in a simple and low-cost way, and the ionic structure of DCi was confirmed by proton nuclear magnetic resonance (1H NMR). The stability measurement of 1 wt% DCi to a MO was investigated, and the lubricating ability and anti-wear properties of DCi as an additive in MO were also examined using a custom-designed reciprocating ball-on-flat tribometer. Optical microscope and profilometry were used to obtain the worn morphology of the steel disks. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were carried out to investigate the wear mechanism and to analyze the surface interactions between the rubbing components. When 1 wt% DCi is added into the base MO, frictional performance is improved at both temperatures studied with a friction reduction of 29.0% and 35.5%, respectively. Moreover, the addition of 1 wt% DCi to MO reduced the wear volume 59.4% compared to the use of MO. An oxygen-richened tribolayer is confirmed by EDS on the disk surface when DCi was used as additive under 100 °C.


Friction ◽  
2020 ◽  
Author(s):  
Weiwei Tang ◽  
Zhiqiang Jiang ◽  
Baogang Wang ◽  
Yufeng Li

AbstractBlack phosphorus quantum dots (BPQDs), obtained via a typical solution-based top-down method, were used as water-based lubricant additives. BPQDs exhibited remarkable friction reduction and anti-wear properties even at the ultra-low concentration of 0.005 wt%, which reduced the friction coefficient and wear volume of the base liquid by 32.3% and 56.4%, respectively. In addition, the load-supporting capacity of the base liquid increased from 120 N to over 300 N. BPQDs-based additives exhibited a relatively long lifetime at a relatively high load of 80 N. The performance of BPQDs considerably exceeded that of the BP; this may be attributed to their small and uniform particle size, good dispersion stability in water, and high reactivity at the frictional surfaces. The results of the surface wear resistance analysis demonstrated that a robust tribochemical film with a thickness of approximately 90 nm was formed on the rubbing surface lubricated with 0.005 wt% of BPQDs dispersion. Moreover, the film served as a direct evidence of the excellent tribological performance of BPQDs.


Wear ◽  
2002 ◽  
Vol 252 (3-4) ◽  
pp. 306-310 ◽  
Author(s):  
Weijiu Huang ◽  
Junxiu Dong ◽  
Fenfang Li ◽  
Boshui Chen

Sign in / Sign up

Export Citation Format

Share Document