friction reducing
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 28)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 70 (1) ◽  
Author(s):  
Ben White ◽  
Reuben Kempka ◽  
Peter Laity ◽  
Chris Holland ◽  
Klaus Six ◽  
...  

AbstractThe “wet-rail” phenomenon results in low adhesion between wheel and rail throughout the year, occurring transiently on a slightly wet, or drying railhead. It has been previously proposed that it is caused by a mixture of iron oxides and small amounts of water (from dew or precipitation) on the railhead that form a friction reducing paste. This paper outlines a novel combination of rheology, modelling and experimental work using a twin disc test rig to determine how the rheology of this iron oxide paste affects adhesion. The yield strength of different types of iron oxides, along with solid oxide fraction of the friction reducing paste, was assessed and used as an input into an “adhesion model” for assessing water and oxide suspensions. The rheological and modelling results were compared against very low adhesion recorded in twin disc experimental validation when simulating the wet-rail phenomenon.


Author(s):  
Siamak Ziakhodadadian ◽  
Tianhui Ren

Abstract In this work, the structural and tribological behavior of graphene oxide samples as a grease addi-tive was studied. By Nd:YAG laser ablation system and using graphite target at two laser energy of 0.3 W and 0.6 W, graphene oxide (GO) samples were successfully prepared. GO samples were characterized using Raman spectroscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDAX). Also, tribological behaviors of the lubricating grease, with and without the graphene oxide in grease, by the pin-on disc tribometer were determined. The Raman spectroscopy measurements showed D and G bound, which confirmed the successful synthesis of the graphene oxide sample and also the I D/I G, decreased by increasing laser power due to decreasing disorder in graphene oxide structure. FESEM images show that by ablating carbon atoms from graphite target in water, particles assemble to form a GO micro-cluster due to thermodynamically agglomeration with average size of about 3–4 µm, which the size of them depends on the laser pulse energy. Based on FTIR and EDAX analysis, GO sample which prepared at lower laser energy possessed the highest content of oxygen and oxygen functional groups. In addition, the results of tribological behavior showed that the friction-reducing ability and antiwear property of the grease can be improved effectively with the addition of GO. However, it is revealed that the small size GO has a better lubricating performance and therefore cluster size appears to play a role in the degree of wear protection due to its impact on the physical and chemical properties. The results of this study indicate that the GO sample prepared at lower laser energy (0.3 W) has a smaller size and the higher the oxygen content therefore provide better friction-reducing and anti-wear effect. Also, additive of graphene oxide in lubricating grease decreases coefficient of friction as well as wear. Based on our results, the application of GO as an additive in grease leads to increased performance of the lubricated kinematic machine.


2021 ◽  
Author(s):  
Mikhail Yurievich Golenkin ◽  
Denis Vladimirovich Eliseev ◽  
Alexander Anatolyevich Zemchikhin ◽  
Alexey Alexandrovich Borisenko ◽  
Akhmat Sakhadinovich Atabiyev ◽  
...  

Abstract The paper describes the results of the first multistage hydraulic fracturing operations in Russia on the Caspian Sea shelf in the gas condensate and oil deposits of the Aptian formation of V. Filanovsky field. In addition to the small productive formation depth, long horizontal sections with a complex trajectory and high collapse gradients due to large zenith angles when passing the Albian and Aptian deposits of poorly consolidated sandstones are an additional challenge for choosing a multistage hydraulic fracturing assembly. The above features require the use of modern sand control screens with enhanced frac sleeves. A design was developed which includes frac sleeves and sand control screens that can withstand multiple cycles of hydraulic impact during hydraulic fracturing, as well as many opening/closing cycles. A seawater-based frac fluid system was applied. The frac fleet was located on a pontoon, the coiled tubing – on a platform. For the first time in Russia, a 2-5/8 inch coiled tubing with a complex-type friction reducing system was used to switch coupling/sleeves in conditions of very long horizontal sections, complex trajectories, and high friction coefficients. The minimum distances between the screen's sliding sleeves and frac sleeves did not prevent from performing manipulations in complex environment. For well cleaning, the frac assemblies of reverse rotary-pulse and rotary-directional types were used. At the first stage of the project, the development of an optimal method of well completion was successfully implemented. Due to the close interaction of the operating company, service company, and science & engineering team of the operator, for the first time in Russia the design of downhole equipment with the use of advanced technologies of sand control screens, frac sleeves was presented. This solution has proved its effectiveness – the downhole equipment has retained its operational properties after a long period of well operation and further in the process of hydraulic fracturing. At the second stage of the project, 32 MSHF operations were performed at four wells. To reduce nonproductive time and operational risks, a satellite communication complex was additionally deployed on the pontoon to join the engineering centers of Astrakhan, Moscow, and Houston. After finishing the well development, the design indicators for formation fluid rates were achieved, which proved the effectiveness of the stimulation of the field's target objects – this opens great prospects for further development of low-permeability reservoirs at offshore sites in the Caspian Sea. The successful project implementation and the achievement of the design values of oil flow rates has expanded the possibilities of commercial operation of the low-permeable Aptian formation, complicated by the presence of a gas cap and underlying water. A solution was presented for working in extended horizontal well sections with 2-5/8 inch coiled tubing together with a complex-type mechanical friction reducing system. The economic effect was achieved when solving tasks of manipulating mechanical screen couplings and frac port sleeves without the involvement of downhole tractors. The use of new solutions in the completion assembly made it possible to eliminate additional sand ingress problems.


2021 ◽  
pp. 349-356
Author(s):  
D. Bohr ◽  
T. Petersen ◽  
K. Brunotte ◽  
B.-A. Behrens

2021 ◽  
Vol 288 (1954) ◽  
pp. 20211065
Author(s):  
Konstantin Nadein ◽  
Alexander Kovalev ◽  
Jan Thøgersen ◽  
Tobias Weidner ◽  
Stanislav Gorb

A protein-based lubricating substance is discovered in the femoro-tibial joint of the darkling beetle Zophobas morio (Insecta). The substance extrudes to the contacting areas within the joint and appears in a form of filiform flows and short cylindrical fragments. The extruded lubricating substance effectively reduces the coefficient of sliding friction to the value of 0.13 in the tribosystem glass/lubricant/glass . This value is significantly lower than 0.35 in the control tribosystem glass/glass and comparable to the value of 0.14 for the tribosystem glass/dry PTFE (polytetrafluoroethylene or Teflon). The study shows for the first time that the friction-reducing mechanism found in Z. morio femoro-tibial joints is based on the lubricant spreading over the contacting surfaces rolling or moving at low loads and deforming at higher loads, preventing direct contact of joint counterparts. Besides Z. morio , the lubricant has been found in the leg joints of the Argentinian wood roach Blaptica dubia .


2021 ◽  
Vol 147 (4) ◽  
pp. 04021006
Author(s):  
Liliane C. C. Auwerter ◽  
Christopher Cheeseman ◽  
Michael R. Templeton ◽  
Maarten van Reeuwijk
Keyword(s):  

Friction ◽  
2021 ◽  
Author(s):  
Weiwei Tang ◽  
Xuejun Zhu ◽  
Yufeng Li

AbstractAdvances in nano-lubricant additives are vital to the pursuit of energy efficiency and sustainable development. Carbon dots (CDs) have been widely investigated in the domain of lubricant additives owing to their extraordinary tribological properties, in particular, their friction-reducing and anti-wear properties. Metal-doped CDs are a new type of CDs, and their friction-reducing and anti-wear properties are attracting increasing attention. Therefore, a series of CDs doped with various divalent metal ions have been successfully synthesized via one-pot pyrolysis. The tribological properties of the synthesized CDs as water-based lubricant additives are in the following order: Zn-CDs > Cu-CDs ≫ Mg-CDs > Fe-CDs > U-CDs. Specifically, adding 1.0 wt% of Zn-CDs into water-based lubricant results in 62.5% friction and 81.8% wear reduction. Meanwhile, the load-carrying capacity of the water-based lubricant increases from 120 N to at least 500 N. Zn-CDs as an additive have long service life. Additionally, anion-tuned Zn-CDs fabricated via anion exchange exhibit promise as lubricant additives for poly(ethylene glycol). Based on the results of wear scar surface analyses, it is discovered that tribochemical films, primarily composed of iron oxides, nitrides, metal carbonates, zinc oxides, zinc carbonates, organic compounds, and embedded carbon cores, formed on the rubbing surfaces with a thickness of approximately 270 nm when Zn-CDs are used as additives. This film combined with the “ball-bearing” and third-particle effects of Zn-CDs contributed to excellent lubrication performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jianyan Zou ◽  
Ping Chen ◽  
Tianshou Ma ◽  
Yang Liu ◽  
Xingming Wang

The excessive drag/torque and the backing pressure is an important factor that restricts the improvement of the penetration rate and the extension of the drilling in the sliding drilling process of extended-reach wells and horizontal wells. To deal with this problem, this paper developed a novel controllable hybrid steering drilling system (CHSDS) based on the friction-reducing principle of a rotating drill string. The CHSDS is composed of a gear clutch, hydraulic system, and measurement and control system. By controlling the meshing and separation of the clutch with the mud pulse signal, the CHSDS has two working states, which leads to two boundary conditions. Combined with the stiff-string drag torque model, the effects of the drilling parameters on the friction-reducing performance of the CHSDS are analyzed systematically. The results show that the friction reduction effect in the inclined section is the most significant, followed by that in the horizontal section, whereas there is almost no impact in the vertical section. Friction reduction increases with the rotary speed and the drilling fluid density, whereas it decreases with the increase in the surface weight-on-bit and the bit reaction torque. Field tests confirm the separation and meshing function of the CHSDS. The developed controllable hybrid steering and friction-reducing technology provides an alternative approach for the safe and high-efficiency drilling of horizontal wells.


Sign in / Sign up

Export Citation Format

Share Document