Characterization of Metal Inserts Embedded in Carbon Fiber Reinforced Plastics

2015 ◽  
Vol 825-826 ◽  
pp. 506-513 ◽  
Author(s):  
Johannes Gebhardt ◽  
Florentin Pottmeyer ◽  
Jürgen Fleischer ◽  
Kay André Weidenmann

The use of fiber-reinforced-plastics (FRP) contributes to an efficient implementation of lightweight design due to their outstanding specific mechanical properties. The RTM process offers great design freedom and allows the integration of functional elements during manufacturing. Embedded metal elements, so-called inserts, can be used to deal with the load transfer to structural parts. These elements have distinctive characteristics in comparison to other joining technologies. For example, detachable connections can be established with the help of inserts. Due to the fiber continuity not being interrupted and, subsequently, the FRP parts not having to be drilled, there is no local bearing stress. This paper aims at the characterization of metal inserts in FRP parts. The parts are manufactured using the RTM process with a specially adapted RTM mold with exchangeable cartridges for different insert geometries. The inserts are made of metal sheets with welded bushings and are embedded during preforming. The cured FRP specimens are tested under different load conditions to evaluate their suitability for various fields of application. Furthermore, the diameter and thickness of the metal sheet of the insert as well as the thickness of the FRP are varied to identify their influence on the failure behavior and load capacity under tensile loads.

2016 ◽  
Vol 25 (3) ◽  
pp. 035041 ◽  
Author(s):  
Moniruddoza Ashir ◽  
Lars Hahn ◽  
Axel Kluge ◽  
Andreas Nocke ◽  
Chokri Cherif

Sign in / Sign up

Export Citation Format

Share Document