Thermodynamic Modelling of Rare-Earth Elements - Oxygen Interaction

2016 ◽  
Vol 843 ◽  
pp. 39-45 ◽  
Author(s):  
G.G. Mikhailov ◽  
L.A. Makrovets ◽  
L.A. Smirnov

Fusibility curves of FeO–La2O3–Al2O3, FeO–Ce2O3–Al2O3, La2O3– Ce2O3–Al2O3 oxide systems are created based on the literature data and modern thermodynamic theories of oxide and metal melts. Admitting the oxide systems conjugation with the area of metal melts existence, we define oxide phases, which can maintain the equilibrium with metal melts of Fe–Ce–Al–O, Fe–La–Ce–Al–O systems. The surfaces of component solubility are created for above mentioned metal melts. For Fe–Ce–Al–O system it is established that the following phases can be at equilibrium with metal: Al2O3, Сe2O3, FeO∙Al2O3, Сe2O3∙11Al2O3, Сe2O3∙Al2O3, and the oxide melt (FeO, Al2O3, Сe2O3, СeO2). For Fe–La–Ce–Al–O system the following oxide phases can be at equilibrium with the liquid metal: La2O3, Al2O3, Сe2O3, La2O3∙Al2O3, Сe2O3∙11Al2O3, Сe2O3∙Al2O3, and the oxide melt (FeO, La2O3, Al2O3, Сe2O3, СeO2). Diagrams of active components consumption, which are used to establish the possibility of chosen equilibrium, are created for iron deoxidation with cerium and aluminium as well as with Ce and La at fixed Al content (0.01 wt. %).

2018 ◽  
Vol 61 (6) ◽  
pp. 460-465
Author(s):  
G. G. Mikhailov ◽  
L. A. Makrovets ◽  
L. A. Smirnov

At the present time, rare-earth elements in metallurgy are used in  the form of mischmetal – a rare-earth elements natural mixture (with  atomic numbers from 57 to 71). It contains about 50  wt.  % of cerium.  The remaining elements are mainly lanthanum and niobium. The specific composition is determined by the ore deposit. Inconstant composition of the modifier containing rare-earth metals (REM) can significantly reduce its efficiency. Experimentally, for every branded steels  composition the ratio of various REMs can’t be selected because of the  high costs of obtaining technically pure rare-earth metals. The task of  determining the each rare earth element optimum concentrations and  complex ligature composition can be solved by thermodynamic modeling. In the framework of thermodynamic modeling, the interaction  between magnesium, aluminum and lanthanum with oxygen in liquid  iron is presented. And the thermodynamic model of steel deoxidation  by these active metals composition is considered. On the basis of available literature data on the phase diagrams of the systems MgO – Al2O3 ,  MgO – La2O3 and La2O3 – Al2O3 , the coordinates of the invariant equilibria points in the system MgO – La2O3 – Al2O3 were determined. The  phase diagram of the system MgO – La2O3 – Al2O3 was constructed. It  made possible to establish all phase equilibria realized in the process  of deoxidation of steel with magnesium, lanthanum and aluminum and  to describe these phase equilibria by chemical reactions equations. The  activity of the components in liquid oxide melts was determined using  the theory of subregular ionic solutions, which takes into account the  dependence of the coordination number of cations on the composition  of the oxide melt. The activity of components in metal melts conjugated with oxide systems were determined by Wagner’s theory using the  parameters of the first order interaction. Equilibrium constants values  for the steel deoxidation reactions are installed indirectly by thermodynamic calculations. On the basis of the obtained data the components  solubility surface in the metal melts of Fe – Mg – Al – La – O system  was constructed, which allowed to determine the liquid metal composition regions associated with the corresponding oxide phase.


2020 ◽  
Vol 299 ◽  
pp. 468-474 ◽  
Author(s):  
Gennady G. Mikhailov ◽  
L.A. Makrovets ◽  
O.V. Samoilova

Thermodynamic modeling of phase equilibria in a liquid metal of Fe–La–Ce–O system at 1600 °С, using the technique of constructing the solubility surfaces for the components of a metal, was carried out. The calculation technique allowed assessing the depth of liquid iron de-oxidation at a complex use of lanthanum and cerium as deoxidizing agents. Also, diagrams of de-oxidants’ consumption for one ton of liquid oxygen-containing iron were calculated in the course of the work. Carrying out a calculation of the solubility surfaces for the components of a metal required simulation of phase diagrams of the following oxide systems: FeO–La2O3–Ce2O3, FeO–CeO2–La2O3, CeO2–La2O3–Ce2O3. The obtained results might be of interest for optimization of the use of rare-earth metals in steelmaking technology.


2019 ◽  
Vol 62 (8) ◽  
pp. 639-645 ◽  
Author(s):  
G. G. Mikhailov ◽  
O. V. Samoilova ◽  
L. A. Makrovets ◽  
L. A. Smirnov

Studying the interaction between oxygen and magnesium and aluminum dissolved in liquid iron is an important task in order to choose optimal parameters for refining and casting of steels. Relevance of this research is caused by determining the possibility and conditions for formation of unfavorable refractory particles of magnesium oxideand magnesian spinel in a metal melt. In the course of this research, thermodynamic modeling of phase equilibria implemented in liquid metal of such systems as Fe – Mg – O, Fe – Al – O and Fe – Mg – Al – O within the temperature range of 1550 – 1650 °С was carried out. Calculation was made using the technique of constructing the solubility surfaces for the metal components which connects quantitative changes in composition of a liquid metal with qualitative changes in composition of products obtained as a result of interaction of a metallic melt’s components. The modeling method was based not only on usin­g equilibrium constants of reactions occurring between components of the systems under research in the selected temperature range, but also on taking into account the values of interaction parameters of the first order (according to Wagner) of elements in liquid iron. In order to simulate activities of the oxide melt conjugated with the metallic one, approximation of the theory of subregular ionic solutions was used. To model activities of oxides solid solution, approximation of the theory of regular ionic solutions was used. And the theory of ideal ionic solutions was used for the solid solution of spinels. In the course of the work, isotherms of oxygen’s solubility in liquid metal of systems Fe – Mg – O, Fe – Al – O and Fe – Mg – Al – O have been constructed, and regions of thermodynamic stability of oxide phases conjugated with the metallic melt have been determined. In particular, compositions area of a liquid metal which is going to be in equilibrium with the solid solution of spinels | FeAl 2 O 4 , MgAl 2 O 4 | solid solution has been determined for Fe – Mg – Al – O system. Results obtained in the course of thermodynamic modeling have been compared to experimental data.


2021 ◽  
Vol 64 (6) ◽  
pp. 413-419
Author(s):  
L. A. Makrovets ◽  
O. V. Samoilova ◽  
G. G. Mikhailov ◽  
I. V. Bakin

At the moment, to improve quality of metal (especially low-alloyed), out-of-furnace steel processing technologies are used with complex alloys utilization, which include alkaline earth metals (ALM) in addition to silicon. Study of strontium additives effect on deoxidation and liquid steel modification processes is one of the promising areas of research in field of metallurgical technologies. Thermodynamic modeling of phase equilibria in Fe – Sr – Si –C– O system melt was carried out using method of constructing surface of components solubility in metal. Solubility surface determines stability limits of non-metallic phases formed during deoxidation, depending on composition of liquid metal of the studied system. The  calculation was carried out using equilibrium constants of reactions occurring in the melt during deoxidation, as well as the first order interaction parameters (according to Wagner) of elements in liquid iron. Activity of the oxide melt components was determined using theory of subregular ionic solutions. Activity of the gas phase was calculated taking into account partial pressures. Simulations were performed for two temperatures (1550 and 1600  °C) for fixed carbon concentrations (0 (no carbon in liquid iron) and 0.1 % (low-carbon metal melt)). It has been shown that, in comparison with silicon, strontium is stronger deoxidizing agent in liquid metal. According to the simulation results, liquid oxide non-metallic inclusions of variable composition or strontium ortho- and metasilicates Sr2SiO4 and SrSiO3 (with an increase in strontium concentration) should be the main oxide phases in deoxidation products. Decrease in the temperature of liquid metal leads to changes in phase formation (formation of SrSiO3 silicate becomes possible).


1994 ◽  
Vol 210 (1-2) ◽  
pp. 177-184 ◽  
Author(s):  
K.M. Cruickshank ◽  
F.P. Glasser

2017 ◽  
Vol 265 ◽  
pp. 862-867 ◽  
Author(s):  
G.G. Mikhailov ◽  
L.A. Makrovets

The thermodynamic characteristics of processes in the liquid metal system Fe–Y–Cr–C–O are considered as applied to low-carbon and low-alloy metal. The critical parameters for the state diagram of the oxide system Y2O3–Cr2O3 were established based on the values quoted in literature. The temperature dependence of the melting reaction constant Y2O3·Cr2O3 was determined. The coordinates of eutectic transformation points for the system Y2O3–Cr2O3 were calculated. In accordance with subregular solution theory, the energetic parameters which are necessary to calculate the activities Cr2O3 and Y2O3 of oxide melts in the system Y2O3–Cr2O3 were determined. The energetic parameters of subregular solution theories for the oxide system FeO–Cr2O3–Y2O3 were determined based on the values for the binary systems FeO–Y2O3, FeO–Cr2O3 and Y2O3–Cr2O3. The view of this diagram, as coupled with the existence domain of liquid metal within the framework of the quaternary system Fe–Y–Cr–O–С, suggests that low-carbon chromic liquid metal when injected with yttrium can form the following non-metallic inclusions: |Cr2O3|, |Y2O3|, |FeO·Cr2O3|, |Y2O3·Cr2O3| or oxide melt (FeO, Y2O3, Cr2O3). Oxide melt may contain up to 2 % of divalent chrome (Cr2+). The equilibrium constants for the main reactions of steel deoxidation with the formation of liquid, solid and gas products of chemical reactions were also established. The activity of components dissolved in metal was calculated using interaction parameters. The set of derived expressions for the activity of components and the dependences of equilibrium constants of chemical reactions and phase transformations allowed us to diagram the surface of component solubility in liquid metal (SCSM). SCSM diagrams show the compositions of liquid metal and indicate oxide phases which are in equilibrium with liquid metal.


2019 ◽  
Vol 946 ◽  
pp. 162-168
Author(s):  
Gennady G. Mikhailov ◽  
L.A. Makrovets

A method for calculation of the diagrams of steel deoxidation and modification by calcium, magnesium, aluminum and boron was developed. The coordinates of the liquidus surfaces of the oxide systems B2O3–Al2O3–MgO, B2O3–Al2O3–CaO, B2O3–MgO–CaO were found at 1873 K. The energy parameters were determined for the theory of subregular ionic solutions of the studied oxide systems. The coordinates of the solubility surfaces for the systems Fe–Mg–Al–B–O, Fe–Ca–Al–B–O, Fe–Mg–Ca–Al–B–O were calculated. The effect of the total pressure on solubility of magnesium and calcium in liquid iron was studied. The activity of the components of the metallic melt was calculated using the first-order interaction parameters (Wagner's theory). The activities of the components of solid solutions (oxides and spinels) were equated with their molar fractions. It was shown that during extensive refining of metal from the oxygen, only a small fraction of boron oxidizes and these oxides form fraction of the oxide melts. The major non-metallic oxide inclusions were magnesia spinel, calcium bialuminate and liquid oxide formations. The "free" boron was dissolved in liquid metal in amounts which were in equilibrium with oxide phases.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 246
Author(s):  
Zhang ◽  
Zhu ◽  
Zhang ◽  
Li ◽  
Luo ◽  
...  

Impurity removal and modification of rare earth concentrate powder were conducted by roasting weak acid-weak alkali leaching to obtain the active components of denitrification catalysts. NH3 selective catalytic reduction catalyst samples were prepared by mixing and kneading with pseudo-γ-Al2O3 boehmite as carrier. The results showed that the Ce7O12 content in the active component samples increased and dispersed more evenly. The grain size of the samples was refined, the specific surface area increased, and the active sites exposed more. Ce coexists in the form of Ce3+ and Ce4+. Fe coexists in the form of Fe3+ and Fe2+, but Fe3+ is abundant. Some Ce, La, Nd, Pr, Fe, Mn, and other components formed solid melts during preparation, which increased the synergistic catalytic effect. The denitrification efficiency of the catalyst sample was 92.8% under the conditions of reaction temperature 400 °C, NO content was 600 ppm, NH3/NO ratio was 1.5, and O2 concentration was 4%.


Sign in / Sign up

Export Citation Format

Share Document