Fluorescence Analysis of Cu(II), Pb(II) and Hg(II) Ion Binding to Humic and Fulvic Acids

2016 ◽  
Vol 851 ◽  
pp. 135-140 ◽  
Author(s):  
Vojtěch Enev ◽  
Irena Türkeová ◽  
Jana Szewieczková ◽  
Leos Doskocil ◽  
Martina Klučáková

Abstract. The aim of this work was to study molecular and quantitative aspects of metal ion binding to humic substances (HS). The object of our study was characterization of two standards of humic substances (Elliott Soil standard HA 1S102H and Elliott Soil standard FA 2S102F). All samples of IHSS standards HS were characterized by elemental analysis (EA), ultraviolet-visible spectroscopy (UV/Vis), Fourier transform infrared spectroscopy (FTIR) and steady-state fluorescence spectroscopy. Chemical parameters on the complexation of Cu (II), Pb(II) and Hg(II), including the conditional stability constants and the percentage of fluorophores participating in the complexation, were estimated by the modified Stern–Volmer equation. The stability constants (log Ka) of Me(II)–ESHS complexes range from 3.70 to 5.15 in the order: Hg–ESHA>Cu–ESHA>Pb–ESHA>Cu–ESFA>Pb–ESFA. With respect to the ESHA, ESFA, which showed the smallest contents of O-containing functional groups (e.g. hydroxyl, carbonyl, ester, especially carboxyl groups on the aromatic ring) and the lowest humification degree, the ESFA was characterized by much smaller stability constants. Our findings suggest that soil HS belongs to class of important organic ligands for complexation with heavy metal ions and may significantly affect the chemical forms, mobility, bioavailability and ecotoxicity of heavy metals in the soil environment.

1987 ◽  
Vol 33 (3) ◽  
pp. 405-407 ◽  
Author(s):  
R B Martin ◽  
J Savory ◽  
S Brown ◽  
R L Bertholf ◽  
M R Wills

Abstract An understanding of Al3+-induced diseases requires identification of the blood carrier of Al3+ to the tissues where Al3+ exerts a toxic action. Quantitative studies demonstrate that the protein transferrin (iron-free) is the strongest Al3+ binder in blood plasma. Under plasma conditions of pH 7.4 and [HCO3-]27 mmol/L, the successive stability constant values for Al3+ binding to transferrin are log K1 = 12.9 and log K2 = 12.3. When the concentration of total Al3+ in plasma is 1 mumol/L, the free Al3+ concentration permitted by transferrin is 10(-14.6) mol/L, less than that allowed by insoluble Al(OH)3, by Al(OH)2H2PO4, or by complexing with citrate. Thus transferrin is the ultimate carrier of Al3+ in the blood. We also used intensity changes produced by metal ion binding to determine the stability constants for Fe3+ binding to transferrin: log K1 = 22.7 and log K2 = 22.1. These constants agree closely with a revision of the reported values obtained by equilibrium dialysis. By comparison with Fe3+ binding, the Al3+ stability constants are weaker than expected; this suggests that the significantly smaller Al3+ ions cannot coordinate to all the transferrin donor atoms available to Fe3+.


1982 ◽  
Vol 35 (6) ◽  
pp. 1145 ◽  
Author(s):  
H Stunzi

The stability constants of 5-sulfonatoisatin β-thiosemicarbazone (β-thiosemicarbazonoisatin-5- sulfonate) [sibt,(3)] with Zn2+ and Fe2+ have been determined from slow pH titrations (I 0.15M KNO3, 37�). At pH 7.4, the conditional stability constants for the sibt complexes are logK1' 4.5 (Zn2+), 3.1 (Fe2+) and log β2' 8.9 (Zn2+), 6.5 (Fe2+). The mixed ligand complexes Zn(sibt)L (L = histidine or glycine) have conditional stability constants log β1110' 8.8 and 7.0, respectively, at pH 7.4. Copper(I) complexes of sibt and bishistidinato-copper(II) coexist in mixtures of Cu2+, sibt and histidine. [In solutions of copper ions, sibt (complexes Cu+) and histidine (chelates Cu2+), the response of the Orion cupric-ion-selective electrode is not stoichiometric.] Also studied was 1-methyl-5-sulfonatoisatin β-thiosemicarbazone [msibt,(4)] which behaves like sibt. 5-Sulfonatoisatin β-semicarbazone and p-sulfonatobenzaldehyde thiosemicarbazone (p-thiosemicarbazonomethyl- benzenesulfonate) are weak ligands. Comparison of the stability constants with those of complexes of biologically relevant chelating agents showed that isatin β-thiosemicarbazones are not expected to form stable complexes with zinc and iron in vivo. Bidentate thiosemicarbazones, such as benzaldehyde thiosemicarbazones, form even weaker complexes. Both classes of thiosernicarbazones have a similar activity against vaccinia virus; this activity seems not to depend on metal ion chelation.


1995 ◽  
Vol 29 (2) ◽  
pp. 446-457 ◽  
Author(s):  
Marc F. Benedetti ◽  
Chris J. Milne ◽  
David G. Kinniburgh ◽  
Willem H. Van Riemsdijk ◽  
Luuk K. Koopal

1999 ◽  
Vol 6 (6) ◽  
pp. 321-328 ◽  
Author(s):  
Bin Song ◽  
Jing Zhao ◽  
Fridrich Gregáň ◽  
Nadja Prónayová ◽  
S. Ali A. Sajadi ◽  
...  

The stability constants of the 1:1 complexes formed between methylphosphonylphosphate (MePP3-), CH3P(O)2--O-PO32- , and Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+,​ or Cd2+ (M2+) were determined by potentiometric pH titration in aqueous solution (25 C° ; l = 0.1 M, NaNO3 ). Monoprotonated M(H;MePP) complexes play only a minor role. Based on previously established correlations for M2+ -diphosphate monoester complex-stabilities and diphosphate monoester β-group. basicities, it is shown that the M(Mepp)- complexes for Mg2+ and the ions of the second half of the 3d series, including Zn2+ and Cd2+, are on average by about 0.15 log unit more stable than is expected based on the basicity of the terminal phosphate group in MePP3-. In contrast, Ba(Mepp)- and Sr(Mepp)- are slightly less stable, whereas the stability for Ca(Mepp)- is as expected, based on the mentioned correlation. The indicated increased stabilities are explained by an increased basicity of the phosphonyl group compared to that of a phosphoryl one. For the complexes of the alkaline earth ions, especially for Ba2+, it is suggested that outersphere complexation occurs to some extent. However, overall the M(Mepp)- complexes behave rather as expected for a diphosphate monoester ligand.


1962 ◽  
Vol 15 (3) ◽  
pp. 457 ◽  
Author(s):  
HJ de Bruin ◽  
D Kairaitis ◽  
RB Temple

The extraction of beryllium from aqueous solution by long-chain tertiary amines has been observed in the presence of ligands giving rise to anionic complexes. The nature of the oxalate complex extracted by solutions of tri-iso-octylamine in chloroform has been studied in detail and the species formed in the organic phase were shown to have the composition Be(C2O4)2.{NH(i-C8H15)3}2. The complexes formed in aqueous solution between beryllium and several anionic complexing agents have been examined by the method of pH-titration. Conditional stability constants have been obtained for the complexes formed with oxalic, malonic, maleic, succinic, phthalic, and salicylic acids. Differences in their extractabilities can be explained semiquantitatively with the help of the stability constants and the acid association constants of the complexing agents.


1988 ◽  
Vol 66 (5) ◽  
pp. 1194-1198 ◽  
Author(s):  
Oswald S. Tee ◽  
N. Rani Iyengar

Bromide ion induced debromination of the anion of 4-bromo-4-methyl-2,5-cyclohexadienone-2-carboxylic acid (1) is catalyzed by cupric ions and ferric ions. Similarly, the enolization of the anion of the benzocyclohexadienone 3, which is formed during the bromination of 1-naphthol-2-carboxylic acid, is catalyzed by some metal ions. The origin of the catalysis in these reactions is strong metal ion binding to the incipient dianion products that are of the salicylate type. Evidence for this is that the efficiency of the metal (and hydrogen) ion catalysis parallels the stability of the analogous complexes with the salicylate dianion.


2001 ◽  
Vol 73 (12) ◽  
pp. 2005-2016 ◽  
Author(s):  
Luuk K. Koopal ◽  
Willem H. van Riemsdijk ◽  
David G. Kinniburgh

Humic substances are soil and fresh-water components that play an important role in the binding and transport of both organic and inorganic contaminants. Transport of the contaminants due to ground- and fresh-water dynamics is directly related to the risks associated with contaminations. The mobility of soluble humic substances is related to their interaction with soil mineral particles. Some key references for the binding of organic and inorganic contaminants and for the binding of humics to mineral particles are presented. Humic substances also play a role in the analysis of the contaminants in natural waters and with remediation of water or soil polluted with pesticides, heavy metal ions, and radionuclides. These aspects are illustrated with some examples. The problems that are encountered with the modeling of the binding of contaminants to humics and of heavy metal ions in particular are illustrated by considering the nonideal competitive adsorption model (NICA) extended with electrostatic interactions. The NICA-Donnan model gives quite good results for the description of metal ion binding, as is illustrated for metal ion binding to purified peat humic acid (PPHA). Finally, some remarks are made with respect to the use of the NICA-Donnan model in general purpose speciation programs and of simplified versions of the model for predictions under restricted environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document