Friction and Wear of Commercially Pure Titanium with Different Microstructure from the View Point of Thermodynamic Analysis

2016 ◽  
Vol 863 ◽  
pp. 50-56 ◽  
Author(s):  
Song Jeng Huang ◽  
S.V. Chertovskikh ◽  
V.I. Semenov ◽  
L.Sh. Shuster

The conditions are substantiated for the loss of thermodynamic stability of a tribosystem and for its adaptation with a decreasing wear rate at the moving frictional contact of parts from commercially pure titanium with an ultrafine-grained structure produced by equal-channel angular pressing. The regularities of the influence of the structure's dispersion degree and the friction contact's temperature on the tribotechnical characteristics of ultrafine-grained materials are established theoretically and experimentally.

2010 ◽  
Vol 667-669 ◽  
pp. 1165-1170 ◽  
Author(s):  
Alexander V. Polyakov ◽  
Dmitriy Gunderov ◽  
Georgy I. Raab

This work reports on the results of investigation of microstructure change of commercially pure titanium Grade 4 with the increase of the number of ECAP-Conform passes. There has been investigated influence of continuous equal-channel angular pressing by the scheme “Conform” (ECAP-C) on the structure and properties of commercially pure titanium Grade 4. It has been demonstrated that as a result of first two ECAP-C cycles titanium structure is strongly fragmented and deformation bands are formed. With the further increase of ECAP-C passes to 6 the band structure is transformed into ultrafine-grained (UFG) structure with the grain size of about 250 nm. The strength of titanium regularly grows with the increase of the number of ECAP-C passes, while ductility, which settles after first cycle on the level of 12%, is almost not changed with the further strain degree increase. As a result of the subsequent drawing of titanium after ECAP-C its strength additionally increases to 1300 MPa, with retention of ductility about 11%.


2017 ◽  
Vol 1 (88) ◽  
pp. 5-11 ◽  
Author(s):  
J. Palán ◽  
L. Maleček ◽  
J. Hodek ◽  
M. Zemko ◽  
J. Dzugan

Purpose: At present, materials research in the area of SPD (severe plastic deformation) processes is very intensive. Materials processed by these techniques show better mechanical properties and have finer grain when compared to the input feedstock. The refined microstructure may be ultrafine-grained or nanostructured, where the grain size becomes less than 100 nm. One of the materials used for such processes is CP (commercially pure) titanium of various grades, which is widely used for manufacturing dental implants. The article deals with one of the technologies available for the production of ultrafine-grained titanium: Conform technology. CP titanium processed by CONFORM technology exhibits improved mechanical properties and very favourable biocompatibility, due to its fine-grained structure. The article presents the current experience in the production of ultrafine CP titanium using this technology. The main objective of this article is describing the behaviour of CP titanium during forming in the Conform device and its subsequent use in dental implantology. Design/methodology/approach: In the present study, commercially pure Grade 2 titanium was processed using the CONFORM machine. The numerical simulation of the process was done using FEM method with DEFORMTM software. The evaluation was performed by simple tensile testing and transmission electron microscopy. The first conclusions were derived from the determined mechanical properties and based on analogies in available publications on a similar topic. Findings: This study confirmed that the SPD process improves mechanical properties and does not impair the ductility of the material. The CONFORM process enables the continuous production of ultrafine-grained or nanostructured materials. Research limitations/implications: At the present work, the results show the possible way of continuous production of ultrafine-grained or nanostructured materials. Nevertheless, the further optimization is needed in order to improve the final quality of wires and stabilize the process. As these factors will be solved, the technology will be ready for the industry. Practical implications: The article gives the practical information about the continuous production of ultrafine-grained pure titanium Grade 2 and the possibility of use this material for dental implants. Originality/value: The present paper gives information about the influence of the CONFORM technology on final mechanical and structural properties with the emphasis on technological aspects


2021 ◽  
Vol 11 (3) ◽  
pp. 273-278
Author(s):  
Gennady Klevtsov ◽  
Ruslan Valiev ◽  
Natalya Klevtsova ◽  
Maxim Fesenyuk ◽  
Maxim Tyurkov ◽  
...  

2018 ◽  
Vol 20 (5) ◽  
pp. 1700863 ◽  
Author(s):  
Alexander Vadimovich Polyakov ◽  
Irina Petrovna Semenova ◽  
Elena Vladimirovna Bobruk ◽  
Seung Mi Baek ◽  
Hyoung Seop Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document