Optimization of Concrete with High Volume of Fly Ash

2016 ◽  
Vol 865 ◽  
pp. 249-254 ◽  
Author(s):  
Adam Hubáček ◽  
Martin Labaj ◽  
Martin Ťažký

The demand for concrete structures grows worldwide, which raises fears about sustainable development of Portland cement production. Its carbon footprint is relatively small compared to alternative building materials, but still it is not negligible. This argument together with lower cost and possibility of utilization of material, which would otherwise be disposed as waste, lead the research towards concrete with higher content of Portland cement replaced with fly ash. The experiment is divided into two parts: the first one determines influence of high volume fly ash replacement of Portland cement on behavior and properties of cement paste and mortar. The second part optimizes composition of concrete mix, in particular the granulometry of the cement-fly ash system in order to achieve maximal possible values of mechanical properties at high dosage of fly ash.

2014 ◽  
Vol 660 ◽  
pp. 312-316
Author(s):  
Mochamad Solikin ◽  
Budi Setiawan

This paper reports an investigation on mechanical properties of high volume fly ash (HVFA) concrete produced using different types of mixing water i.e. tap water and saturated lime water. The mechanical properties of ordinary Portland cement concrete are also investigated as control tests. The concrete were tested for their compressive strength, flexural strength and splitting tensile strength at the curing ages of 56 days. The results showed that strength development of high volume fly ash concrete up to 56 days is lower than ordinary portal cement. In addition, the flexural strength and splitting strength of concrete are lower than ordinary Portland cement. Moreover, the use of saturated lime water as mixing water reduces the mechanical properties of class C high volume fly ash concrete.


2002 ◽  
Vol 16 (6) ◽  
pp. 353-363 ◽  
Author(s):  
J Mirza ◽  
M.S Mirza ◽  
V Roy ◽  
K Saleh

2014 ◽  
Vol 51 ◽  
pp. 278-286 ◽  
Author(s):  
Steve W.M. Supit ◽  
Faiz U.A. Shaikh ◽  
Prabir K. Sarker

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2607 ◽  
Author(s):  
Chenhua Jin ◽  
Chang Wu ◽  
Chengcheng Feng ◽  
Qingfang Zhang ◽  
Ziheng Shangguan ◽  
...  

Strain-hardening cementitious composite (SHCC) is a kind of construction material that exhibits multiple cracking and strain-hardening behaviors. The partial replacement of cement with fly ash is beneficial to the formation of the tensile strain-hardening property of SHCC, the increase of environmental greenness, and the decrease of hydration heat, as well as the material cost. This study aimed to develop a sustainable construction material using a high dosage of fly ash (no less than 70% of the binder material by weight). Based on the micromechanics analysis and particle size distribution (PSD) optimization, six mixes with different fly ash to cement ratios (2.4–4.4) were designed. The mechanical properties of the developed high-volume fly ash SHCCs (HVFA-SHCCs) were investigated through tensile tests, compressive tests, and flexural tests. Test results showed that all specimens exhibited multiple cracking and strain-hardening behaviors under tension or bending, and the compressive strength of the designed mixes exceeded 30MPa at 28 days, which is suitable for structural applications. Fly ash proved to be beneficial in the improvement of tensile and flexural ductility, but an extremely high volume of fly ash can provide only limited improvement. The HVFA-SHCC mix FA3.2 (with fly ash to binder ratio of about 76% by weight) designed in this study is suggested for structural applications.


2020 ◽  
Vol 10 (18) ◽  
pp. 6454
Author(s):  
Valeria Corinaldesi ◽  
Jacopo Donnini ◽  
Chiara Giosué ◽  
Alessandra Mobili ◽  
Francesca Tittarelli

The possibility of producing high-volume fly ash (HVFA) recycled aggregate concrete represents an important step towards the development of sustainable building materials. In fact, there is a growing need to reduce the use of non-renewable natural resources and, at the same time, to valorize industrial by-products, such as fly ash, that would otherwise be sent to the landfill. The present experimental work investigates the physical and mechanical properties of concrete by replacing natural aggregates and cement with recycled aggregates and fly ash, respectively. First, the mechanical properties of four different mixtures have been analyzed and compared. Then, the effectiveness of recycled aggregate and fly ash on reducing carbonation and chloride penetration depth has been also evaluated. Finally, the corrosion behavior of the different concrete mixtures, reinforced with either bare or galvanized steel plates, has been evaluated. The results obtained show that high-volume fly ash (HVFA) recycled aggregate concrete can be produced without significative reduction in mechanical properties. Furthermore, the addition of high-volume fly ash and the total replacement of natural aggregates with recycled ones did not modify the corrosion behavior of embedded bare and galvanized steel reinforcement.


Sign in / Sign up

Export Citation Format

Share Document