Microstructure and Mechanical Properties of Semi-Solid Die-Cast A356 Aluminum Alloy

2016 ◽  
Vol 877 ◽  
pp. 39-44
Author(s):  
Si Min Lei ◽  
Li Gao ◽  
Yohei Harada ◽  
Shinji Kumai

The present work deals with the relationship between microstructure and mechanical properties of A356 aluminum alloy which was produced via thixocasting process under different casting conditions. Feedstock billets were heated to a target temperature to obtain a semi-solid slurry with the required solid fraction. Some billets were heated to a fully-melted condition. In order to obtain fine and spheroidized Al grains, some billets for the partially melting were compressed axially by 33% at a room temperature before heating. The completely-melted and partially-melted slurries were die-cast by using a die-cast machine, and hour glass-shaped rod-type tensile specimens and small-size plate-type tensile specimens were obtained. Small cubic specimens were also collected from the die-cast products for microstructural evaluation. They were polished, and etched by Weck’s reagent. The partially-melted specimen which was compressed before heating shows the spherical Al grains. But the grain of the strain-free partially-melted specimen exhibited complicated morphology. The fully-melted specimen shows the fine and dendrite structure.

2010 ◽  
Vol 97-101 ◽  
pp. 306-310 ◽  
Author(s):  
Xiang Lin Yin ◽  
Yi Tao Yang ◽  
Yu Peng Shao ◽  
Guang Jie Shao

The non-dendritic of A356 aluminum alloy billet was reheated to meet the requirements of the semi-solid microstructure by three different kinds of power, achieving the same final temperature of 863K. Subsequently, under the same conditions of die-casting (thixoforming), the microstructure was observed, surface hardness and tensile properties were measured. Afterwards, quantitative analysis was made for the microstructure of the reheated semi-solid of billet and the thixoforming parts. The results showed that the larger induction reheating power of the billet, the smaller the grain size of its microstructure and the higher surface hardness and the better mechanical properties of its thixoforming sample. Finally, through studying on the relationship between the microstructure of the semi-solid billet of A356 aluminum alloy and the mechanical properties of the thixoforming sample, we primarily achieved the reverse design of microstructure.


2014 ◽  
Vol 496-500 ◽  
pp. 371-375 ◽  
Author(s):  
Apirit Petkhwan ◽  
Prapas Muangjunburee ◽  
Jessada Wannasin

In this research, the semi-solid state joining of SSM A356 aluminum alloy was investigated. The butt-joint of SSM A356 was heated by an induction heating coil to create a localized semisolid pool. Then a stirrer was applied into the joint seam in order to mix the weld metal. The accurate controlling of temperature during joining was measured. The effects of stirring rate on physical, macrostructure, microstructure and mechanical properties were studied. Experimental results showed that increase in stirring rates, the surface of the joint was smooth. The weld metal consisted of the globular microstructure and also voids. The density of weld metal zone increased by an appropriate stirring. The best tensile strength was achieved with 1750 rpm, 70 mm/min for 103.4 MPa.


2006 ◽  
Vol 116-117 ◽  
pp. 453-456 ◽  
Author(s):  
Yong Lin Kang ◽  
Yue Xu ◽  
Zhao Hui Wang

In this paper, with a newly self-developed rotating barrel rheomoulding machine(RBRM), microstructures and mechanical properties of rheo-die casting A356 alloy were studied. In order to clearly show the characteristic of rheo-die casting, liquid die casting and semi-solid casting were done too. The experimental results showed that microstructures of rheo-die casting were composed of solid grains, which were finer and rounder, and had fewer pores. In the three technologies, integrated mechanical properties of semi-solid rheo-die casting were the best.


2012 ◽  
Vol 192-193 ◽  
pp. 404-409 ◽  
Author(s):  
W.M. Mao ◽  
Z.Z. Chen ◽  
H.W. Liu ◽  
Y.G. Li

The semi-solid slurry of A356 aluminum alloy was prepared through a serpentine pouring channel, which is a new method proposed recently for semi-solid forming process, and the effect of pouring temperature and bend number in the channel on the slurry microstructure was investigated and the slurry was finally rheo-die cast. The results show that when the pouring temperatures are between 640oC and 680oC, the slurry of A356 aluminum alloy with spherical primary a-Al grains can be prepared under the given conditions. The more the bend numbers in the channel are, the better the slurry is, i.e. the primary a-Al grains are more spherical and finer. The results also show that the as-cast ultimate strength and elongation of the rheo-die castings can reach 250MPa and 8.613.2% respectively. After T6 heat treatment, the ultimate strength and elongation of the rheo-die castings can reach 320MPa and 8.011.3% respectively. The work undertaken demonstrates eventually that the serpentine pouring channel process is a good method for semi-solid rheo-die casting or rheo-forming of metallic materials, the process is simple and the slurry cost is not expensive.


Sign in / Sign up

Export Citation Format

Share Document