A Finite Element Analysis for an Iron Ore Pellet Compression Test

2017 ◽  
Vol 899 ◽  
pp. 474-477
Author(s):  
Maria Carolina dos Santos Freitas ◽  
Flavia de Paula Vitoretti ◽  
Jorge Franklin Mansur Rodrigues Filho ◽  
Viviane Lima Silva ◽  
Jose Adilson de Castro ◽  
...  

The increasing global demand for iron ore pellets has made the pelletizing companies to step up their investments. The mechanical strength of the pellets, as well as its wear resistance are important factors to characterize the mechanical behavior. These properties are influenced by the type and nature of the ore or concentrate, the additives and the subsequent heat treatment used. This paper develops a numerical finite element model in order to characterize the mechanical behavior of iron ore pellets. The main objective of this study was to establish a valid finite element model that is able to simulate the mechanical behavior of iron ore pellets. The uniaxial compression test was made to evaluate the mechanical properties of the pellets. Furthermore, modeling and simulations are done using the software ABAQUS CAE® for uniaxial compression using the material properties obtained by the test. Lastly, in order to validate the model, the experimental data is crossed with the simulation results to discuss its correlation and particularities.

2017 ◽  
Vol 899 ◽  
pp. 448-451
Author(s):  
Jorge Franklin Mansur Rodrigues Filho ◽  
Maria Carolina dos Santos Freitas ◽  
Flavia de Paula Vitoretti ◽  
Jose Adilson de Castro ◽  
Gláucio Soares Fonseca

The increasing global demand for iron ore pellets has made the pelletizing companies to step up their investments. The mechanical strength of the pellets, as well as its wear resistance are important factors to characterize the mechanical behavior. These properties are influenced by the type and nature of the ore or concentrate, the additives and the subsequent heat treatment used. This paper develops a numerical finite element model in order to characterize the mechanical behavior of iron ore pellets. The biaxial compressive stress was analyzed in this study. The results show that the pellet subjected to biaxial stress supports higher levels of stress and strain when compared to uniaxial efforts. Accuracy increase of the simulation results can be obtained with the implementation of a failure criterion for brittle materials in the numerical model. Finally, could be seen that the pellet had higher levels of deformation under biaxial symmetric strain, when compared with the uniaxial compression results.


2013 ◽  
Vol 2013 (0) ◽  
pp. 261-262
Author(s):  
Takako OSAWA ◽  
Shigeaki MORIYAMA ◽  
Tomoyo YUTANI ◽  
Naoyuki NISHIMURA ◽  
Yuki USUI ◽  
...  

2017 ◽  
Vol 14 (3) ◽  
pp. 200-207 ◽  
Author(s):  
Feng Luo ◽  
Guodong Li ◽  
Hao Zhang

Purpose The purpose of this paper is to obtain the mechanical behavior and damage mechanism of the coal and rock near the stope under the stress state and stress paths of the surrounding rock with the dynamic mining. Design/methodology/approach Through the three-axial compression test and the uniaxial compression test by meso experiment device, the mechanical behavior and fracture evolution process of coal and rock were studied, and the acoustic emission (AE) characteristics under uniaxial compression of the coal and rock were contrasted. Findings Under the three-axial compression, the strength of coal and rock enhance significantly by confining pressure. The volume of outburst coal shows obvious stages: compression is followed by expansion. The coal first appear to undergo compaction under vertical stress due to volume decrease, but with the development of micro- and macro-cracks, the specimens appeared to expand; under the uniaxial compression, through the comparison of stress–strain relationship and the crack propagation process, stress drop and fracture of coal have obvious correlation. The destruction of coal was gradual due to the slow and steady accumulation of internal damage. Due to the influence of the end effect, the specimens show the “conjugate double shear failure”. The failure process of the coal and rock and the characteristics of the AEs have a corresponding relationship: the failure causes a large number of AE events. Before the events peak, there was an initial stage, calm growth stage and explosive growth stage. There were some differences between the rock and coal in the characteristics of the AE. Originality/value These research studies are conducted to provide guidance on the basis of mine disaster prevention and control.


2016 ◽  
Vol 680 ◽  
pp. 72-75
Author(s):  
Yan Min ◽  
Zeng Chen Cao ◽  
Shuang Li

Based on GB/T 5137.1-2002 experiment specification, the finite element model of head-form impacting laminated glass for automotive windscreens is set up in this paper. According to Finite Element Analysis results of laminated glass with different structure and further analyzing impact property and mechanism of laminated glass , the influence rule of the structure of the laminated glass on the mechanical behavior is discussed. (H)


2017 ◽  
Author(s):  
Saman Naghieh ◽  
Mohammad Reza Karamooz-Ravari ◽  
Mohsen Badrossamay ◽  
Ehsan Foroozmehr

In recent years, thanks to additive manufacturing technology, researchers have gone towards the optimization of bone scaffolds for the bone reconstruction. Bone scaffolds should have appropriate biological as well as mechanical properties in order to play a decisive role in bone healing. Since the fabrication of scaffolds is time consuming and expensive, numerical methods are often utilized to simulate their mechanical properties in order to find a nearly optimum one. Finite element analysis is one of the most common numerical methods that is used in this regard. In this paper, a parametric finite element model is developed to assess the effects of layers penetration׳s effect on inter-layer adhesion, which is reflected on the mechanical properties of bone scaffolds. To be able to validate this model, some compression test specimens as well as bone scaffolds are fabricated with biocompatible and biodegradable poly lactic acid using fused deposition modeling. All these specimens are tested in compression and their elastic modulus is obtained. Using the material parameters of the compression test specimens, the finite element analysis of the bone scaffold is performed. The obtained elastic modulus is compared with experiment indicating a good agreement. Accordingly, the proposed finite element model is able to predict the mechanical behavior of fabricated bone scaffolds accurately. In addition, the effect of post-heating of bone scaffolds on their elastic modulus is investigated. The results demonstrate that the numerically predicted elastic modulus of scaffold is closer to experimental outcomes in comparison with as-built samples.


2011 ◽  
Vol 255-260 ◽  
pp. 1192-1197
Author(s):  
Qing Tian Su ◽  
Dong Fang Wang ◽  
Guo Tao Yang

The concrete decks in wide box composite girder bridge carrying vehicle load directly are easy to failure. So the decks in approach bridge of Jiubao Bridge are designed to renewable component. Several deck removal plans were put forward based on the structure characteristics of the Jiubao bridge. Spatial finite element model of the bridge was set up and the responses of approach bridge under different removal plan were analyzed. The analysis results show that methods proposed in this paper about deck removal in local position or in whole span are feasible; however different whole span removal method affect the mechanical behavior of the approach bridge heavily.


Sign in / Sign up

Export Citation Format

Share Document