Study of Heavy Metal Ions Mn(II), Zn(II), Fe(II), Ni(II), Cu(II), and Co(II) Adsorption Using MFe2O4 (M=Co2+, Mg2+, Zn2+, Fe2+, Mn2+, and Ni2+) Magnetic Nanoparticles as Adsorbent

2017 ◽  
Vol 901 ◽  
pp. 142-148 ◽  
Author(s):  
Wahyu Waskito Aji ◽  
Edi Suharyadi

Removal of heavy metal ions (Co2+, Cu2+, Zn2+, Fe2+, Mn2+, and Ni2+) from artificial wastewater has been successfully perfomed by adsorption process using magnetic ferrite (MFe2O4; M=Co2+, Mg2+, Zn2+, Fe2+, Mn2+, and Ni2+) nanoparticles. Ferrite nanoparticles were synthesized using coprecipitation method and used as absorbent in heavy metal ions removal with concentration of 5 g/L and 10 g/L. The adsorption and desorption ability of each ferrite nanoparticles, the effect of heavy metal ion in adsorption and desorption process, and the endurance of ferrite nanoparticles were investigated using atomic absorption spectroscopy (AAS). The removal process has been conducted for wastewater at pH 7.It showed the presence of heavy metal precipitate in solution. The result shows that MgFe2O4 has the highest adsorption ability than other ferrite and MnFe2O4 is the lowest. Desorption ability of all ferrites is high except for Fe ion removal. Desorption of Fe ion shows very low result which might due to FeO bond from Fe ion reaction in acid solution. The endurance of MnFe2O4 and Fe3O4 as adsorbent after repeated adsorption and desorption process is up to 4 times and more than 6 times. The MnFe2O4 nanoparticles show a stability in adsorption ability after 4 times repetition adsorption and desorption process.

2021 ◽  
Author(s):  
Rongrong Si ◽  
Daiqi Wang ◽  
Yehong Chen ◽  
Dongmei Yu ◽  
Qijun Ding ◽  
...  

Abstract Heavy metal ion pollutions are of serious threat for our human health, and advanced technologies on removal of heavy metal ions in water or soil are in the focus of intensive research worldwide. Nanocellulose based adsorbents are emerging as an environmentally friendly appealing materials platform for heavy metal ions removal as nanocellulose has higher specific surface area, excellent mechanical properties and good biocompatibility. In this review, we briefly compare the differences of three kinds of nanocellulose and their preparation method. Then we cover the most recent work on nanocellulose based adsorbents for heavy metal ions removal, and present an in-depth discussion of the modification technologies for nanocellulose in assembling high performance heavy ions adsorbent process. By introducing functional groups, such as amino, carboxyl, phenolic hydroxyl, and thiol, the nanocellulose based adsorbents not only remove single heavy metal ions through ion exchange, chelation/complexation/coordination, electrostatic attraction, hydrophobic actions, binding affinity and redox reactions, but also can selectively adsorb multiple heavy ions in water. Finally, some challenges of nanocellulose based adsorbents for heavy metal ions are also prospected. We anticipate that the review supplies some guides for nanocellulose based adsorbents applied in heavy metal ions removal field.


2008 ◽  
Vol 569 ◽  
pp. 285-288 ◽  
Author(s):  
Hyun Jong Lee ◽  
Beom Goo Lee ◽  
Dae Yong Shin ◽  
Heon Park

In this study lignocellulosic fibers, such as kenaf bast, kenaf core, sugar cane bagasse, cotton, coconut coir, and spruce, which are environment friendly natural materials, were tested for their ability to remove copper, nickel and zinc ions from aqueous solutions. The fibers were analyzed for Klason lignin content, water sorption capacity and dry volume. The fiber with the highest level of heavy metal removal in the separate and mixed solution was kenaf bast.. In the mixed solution kenaf bast, sugar cane bagasse and cotton removed more copper and nickel ion than in the separate solution, and the amounts of removed heavy metal ions were changed in some lignocellulosic fibers, compared to those of the separate solution. In the mixed solution heavy metal ions may compete with one another for sorption sites on the surface of lignocellusic fiber. In kenaf bast to remove heavy metal ions most, Klason lignin content was the second lowest, and water sorption and dry volume were the lowest in all tested lignocellulosic fibers. It showed that removal of heavy metal ions does not correlate with any chemical and physical factors, but may be affected by the cell wall structure of lignocellulosic fibers and how many free phenolic groups in lignin, which are considered as the heavy metal ion binding site, are exposed on the surface of fibers. Cotton, with about 1% Klason lignin, was very low in heavy metal ion removal, while all other fibers containing greater than about 10% lignin did remove heavy metal ions. It showed that even the lignin content of lignocellulosic fibers does not correlate with heavy metal ion removal but lignin does play a role in heavy metal ion removal.


Substantia ◽  
2021 ◽  
pp. 79-88
Author(s):  
Mohammad Ziaee ◽  
Mojtaba Taseidifar ◽  
Richard M. Pashley ◽  
Barry W. Ninham

Pollution of drinking water by toxic heavy-metal ions is a matter of concern worldwide. These ions occur naturally, and also from environmental spills, radioactive wastes and other industrial waste. Arsenic and lead are typical examples. A novel green surfactant, purpose designed, and environmentally friendly is shown to be extremely effective and specific for heavy metal ion removal. This is a considerable step forward on previous technologies. Surfactants have been used universally to remove organic and inorganic contaminants from water. But little selectivity has been achieved. After usage, the residual surfactants are discharged into surface waters or sewage systems.  This causes environmental pollution. In this review, three surfactants from different classes (novel green surfactant, synthetic chemical surfactant and biosurfactant) are compared in terms of their efficiency in flotation, removal of different heavy-metal ions, biodegradability, and toxicity level, including their advantages and disadvantages.


2014 ◽  
Vol 901 ◽  
pp. 45-51
Author(s):  
Dan Feng Cui ◽  
Jian Zhuang Zhao ◽  
Yan Ying Zheng

This paper presents a new decoration view functionalization of mesoporous silica to extend their applications to heavy metal ion removal. The study showed that Hacac can be incorporated into the structure through in-situ strategy, and the calcined Hacac-silica possesses advantages of high specific surface area of about 1496 m2/g and pore size of 4nm, ordered spheric morphology of about 300nm in diameter. Auxiliary by ultrasonic technology, the heavy metal ions remove rates are more than 95% for Pb2+, Cu2+ and Cr3+. More choice of chelating agents can be used for further functionalization of silica based mesoporous material.


CrystEngComm ◽  
2019 ◽  
Vol 21 (46) ◽  
pp. 7141-7154 ◽  
Author(s):  
Wancheng Zhu ◽  
Xiuping Chen ◽  
Panpan Sun ◽  
Jie Li ◽  
Peiyan Zhai ◽  
...  

A facile EDTA-2Na-assisted hydrothermal route is developed to synthesize hierarchical carnation-like Ca4B10O19·7H2O microspheres as high-efficiency adsorbents for heavy metal ion (Pb2+) removal from mimic wastewater.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Thi Sinh Vo ◽  
Muhammad Mohsin Hossain ◽  
Hyung Mo Jeong ◽  
Kyunghoon Kim

AbstractWater is a significant natural resource for humans. As such, wastewater containing heavy metals is seen as a grave problem for the environment. Currently, adsorption is one of the common methods used for both water purification and wastewater treatment. Adsorption relies on the physical and chemical interactions between heavy metal ions and adsorbents. Adsorptive membranes (AMs) have demonstrated high effectiveness in heavy metal removal from wastewater owing to their exclusive structural properties. This article examines the applications of adsorptive membranes such as polymeric membranes (PMs), polymer-ceramic membranes (PCMs), electrospinning nanofiber membranes (ENMs), and nano-enhanced membranes (NEMs), which demonstrate high selectivity and adsorption capacity for heavy metal ions, as well as both advantages and disadvantages of each one all, are summarized and compared shortly. Moreover, the general theories for both adsorption isotherms and adsorption kinetics are described briefly to comprehend the adsorption process. This work will be valuable to readers in understanding the current applications of various AMs and their mechanisms in heavy metal ion adsorption, as well as the recycling methods in heavy ions desorption process are summarized and described clearly. Besides, the influences of morphological and chemical structures of AMs are presented and described in detail as well.


2021 ◽  
Vol 333 ◽  
pp. 01002
Author(s):  
Eva Oktavia Ningrum ◽  
Shuji Sakohara ◽  
Takehiko Gotoh ◽  
Suprapto ◽  
Nurlaili Humaidah

The present research was performed aiming to develop gel with the characteristic of reversible thermosensitive in adsorbing heavy metal ions from its solution. There were three gels used in this study to adsorb heavy metal ion from salt solution provided Zn(NO3)2; copolymer gel consisting of zwitterionic betaine N,N-dimethyl(acrylamidopropyl)ammonium propane sulfonate (DMAAPS), N,N-dimethyl(acrylamidopropyl)ammonium butane sulfonate (DMAABS), and DMAAPS copolymerized with thermosensitive N-isopropylacrylamide (NIPAM) gels. The aforementioned gels were employed to examine its ability in adsorbing and swelling after being synthesized through free radical polymerization before being affected by methylene spacer number, copolymerization, and temperature given. This research found that as the temperature increases, the ability of the gel in adsorbing the ions decreases. In the case of DMAAPS and DMAABS gel, the swelling degree value increases when the temperature also increases. Meanwhile, sulfobetaine which has larger spacer has higher adsorption ability but not with its swelling degree. In spite of having more spacer than DMAAPS, DMAABS found to have the smallest swelling degree value. In addition, NIPAM-co-DMAAPS was found to have both the highest adsorption ability and swelling degree value. Even though copolymer has less amount of sulfobetaine than DMAAPS and DMAABS gels’, the copolymer gel was found to have higher ability of adsorption as many as ten times of other gels.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 685
Author(s):  
Ai-Huei Chiou ◽  
Jun-Luo Wei ◽  
Ssu-Han Chen

A novel surface-enhanced Raman scattering (SERS)-based probe to capture heavy metal ion (Zn2+) by bovine serum albumin (BSA) using Si-nanowire (SiNW) arrays with silver nanoparticles (AgNPs) was developed. A layer with AgNPs was deposited on the SiNW surface by RF magnetron sputtering for enhancement of SERS signals. Using a high-resolution transmission electron microscope (HRTEM), the observation reveals that the AgNP layer with depths of 30–75 nm was successfully deposited on SiNW arrays. The Ag peaks in EDS and XRD spectra of SiNW arrays confirmed the presence of Ag particles on SiNW arrays. The WCA observations showed a high affinity of the Ag–SiNW arrays immobilized with BSA (water contact angle (WCA) = 87.1°) and ZnSO4 (WCA = 8.8°). The results of FTIR analysis illustrate that the conjugate bonds exist between zinc sulfate (ZnSO4) and –OH groups/–NH groups of BSA. The resulting SiNWs/Ag NPs composite interfaces showed large Raman scattering enhancement for the capture of heavy metal ions by BSA with a detection of 0.1 μM. BSA and ZnSO4 conjugations, illustrating specific SERS spectra with high sensitivity, which suggests great promise in developing label-free biosensors.


2021 ◽  
pp. 125408
Author(s):  
Yanchen Zhu ◽  
Xin Wang ◽  
Zilong Li ◽  
Yunxiang Fan ◽  
Xujing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document