Debinding Rate Enhancement of 17-4 Precipitation Hardening Stainless Steel Solvent Debinding on Metal Injection Molding Process as the Material for Orthodontic Bracket

2018 ◽  
Vol 929 ◽  
pp. 200-208 ◽  
Author(s):  
Sugeng Supriadi ◽  
Deni Ferdian ◽  
Gerra Maulana ◽  
Rizki Hidayatullah ◽  
Bambang Suharno

Brackets fabrication should be done by a suitable process to produce great result. Processes commonly used are investment casting, machining, and metal injection molding. Investment Casting has a drawback in which the surface roughness is quite high for the standard of brackets and require further processing. Machining is done by removing unwanted part to get desire shape, whereas bracket shape requires a high accuracy and is quite complicated. In Metal Injection Molding, feedstock is injected into a mold where complicated shapes can be achieved with a better surface roughness. The weakness is the stages within the process are quite long. One of the problem is the efficiency of debinding stage. We conducted an experiment to enhance binder removal rate through solvent debinding with stirring and under vacuum condition. Sample use for this experiment is a cubic shape of 0.5 x 0.5 x 0.5 cm3. Experiment is done on magnetic stirrer and in vacuum furnace. The temperature is hold at 50°C. Drying process afterward is done in the vacuum furnace for 1 hour with temperature around 50°C. Amount of binder left is confirmed by STA and the particle morphology is seen by SEM. Results showed that stirring treatment enhances binder removal rate due to stirring mechanism that causes possibility of collisions between particles increases. Binder removal rate on the vacuum treatment has a mechanism similar to stirring, but with the addition of the solvent to be done on a regular basis due to decrease of solvent boiling point under vacuum. There were no cracks found on the surface with an increased rate of debinding. Stirring is use for experiment with sample of actual bracketorthodontic form. Debinding rate of the bracket sample is faster than the cubic sample. This result is affected by the dissimilarity on the volume to surface area.

2010 ◽  
Vol 44-47 ◽  
pp. 2872-2876
Author(s):  
Pei Li Haw ◽  
Norhamidi Muhamad ◽  
Hadi Murthadha

The rheological behaviors of the Micro Metal Injection Molding feedstock are important for the stability of the feedstock during micro injection molding process and quality of the final micro-components. Homogeneous feedstocks are preferable for MIM process to ensure the dimensional consistency of molded components and prevent the defects of powder-binder separation or particle segregation. In this work, feedstocks with various formulations of 316L stainless steel and binder system were prepared by using Brabender Plastograph EC Plus mixer. The binder system comprises of palm stearin, polyethelene (PE) and stearic acid. In order to obtain the viscosity, activation energy, flow behavior and mold ability index, the rheological characterization of the feedstocks were investigated in numerous conditions by using Shimadzu 500-D capillary rheometer The study showed that all of the 316L stainless steel feedstocks are homogenous with pseudo-plastic behaviors.


2007 ◽  
Vol 4 (2) ◽  
pp. 1
Author(s):  
Muhammad Hussain Ismail ◽  
Norhamidi Muhamad ◽  
Aidah Jumahat ◽  
Istikamah Subuki ◽  
Mohd Afian Omar

Metal Injection Molding (MIM) is a wellestablished technology for manufacturing a variety of complex and small precision parts. In this paper, fundamental rheological characteristics of MIM feedstock using palm stearin are theoretically analyzed and presented. The feedstock consisted of gas atomized 316L stainless steel powder at three different particle size distributions and the binder system of palm stearin (PS) and polyethylene (PE). The powder loading used was 60vol % for all samples (monosize 16 µm, monosize 45 µm, and bimodal 16 µm + 45 µm) and the binder system of 40vol %(PS/PE = 40/60). The viscosity of MIM feedstock at different temperatures and shear rates was measured and evaluated. Results showed that, the feedstock containing palm stearin exhibited suitable rheological properties by increasing the fluidity of feedstock in MIM process. The rheological results also showed a pseudoplastic flow characteristics, which poses higher value of shear sensitivity (n) and lower value of flow activation energy (E), that are both favourable for injection molding process. The green parts were successfully injected and exhibited adequate strength for handling by optimizing the injection pressure and temperature.


2012 ◽  
Vol 602-604 ◽  
pp. 627-630 ◽  
Author(s):  
Kyu Sik Kim ◽  
Kee Ahn Lee ◽  
Jong Ha Kim ◽  
Si Woo Park ◽  
Kyu Sang Cho

Inconel 713C alloy was tried to manufacture by using MIM(Metal Injection Molding) process. The high-temperature mechanical properties of MIMed Inconel 713C were also investigated. Processing defects such as pores and binders could be observed near the surface. Tensile tests were conducted from room temperature to 900°C. The result of tensile tests showed that this alloy had similar or somewhat higher strengths (YS: 734 MPa, UTS: 968 MPa, elongation: 7.16 % at room temperature) from RT to 700°C than those of conventional Inconel 713C alloys. Above 800°C, however, ultimate tensile strength decreased rapidly with increasing temperature (lower than casted Inconel 713C). Based on the observation of fractography, initial crack was found to have started near the surface defects and propagated rapidly. The superior mechanical properties of MIMed Inconel 713C could be obtained by optimizing the MIM process parameters.


2016 ◽  
Vol 19 ◽  
pp. 552-557 ◽  
Author(s):  
A. Noorsyakirah ◽  
M. Mazlan ◽  
O. Mohd Afian ◽  
M. Ahmad Aswad ◽  
S. Muhammad Jabir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document