A Study on Influence of Underwater Friction Stir Welding on Microstructural, Mechanical Properties and Formability in 5052-O Aluminium Alloys

2019 ◽  
Vol 969 ◽  
pp. 27-33
Author(s):  
K. Tejonadha Babu ◽  
S. Muthukumaran ◽  
C.H. Bharat Kumar ◽  
C. Sathiya Narayanan

Friction stir welding (FSW), a solid-state joining process is extensively using in the welding of aluminum alloy sheets. In order to save energy and reduce emission, lightweight materials like aluminum alloys were introduced into steel car body, which requires the development of effective joining processes. In the present study, welding was carried out in two different conditions, in the air (CFSW) and underwater (UWFSW) at various welding speeds to weld 5052-O aluminum alloy sheets. The effect of UWFSW on microstructural developments, mechanical properties, and formability was evaluated and compared. Grain refinement is an important opportunity to improve the mechanical properties of FS welds. Considerable grain refinement was obtained in UWFSW joints, which is smaller than that in the CFSW joints. The results indicated an increase in tensile strength, hardness, the percentage of elongation, and formability of UWFSW weld sheets. The results of the tensile test, hardness test, microstructure and fractography as in good correlation with improved properties.

Author(s):  
Srinivasa Rao Pedapati ◽  
Dhanis Paramaguru ◽  
Mokhtar Awang

As compared to normal Friction Stir Welding (FSW) joints, the Underwater Friction Stir Welding (UFSW) has been reported to be obtainable in consideration of enhancement in mechanical properties. A 5052-Aluminum Alloy welded joints using UFSW method with plate thickness of 6 mm were investigated, in turn to interpret the fundamental justification for enhancement in mechanical properties of material through UFSW. Differences in microstructural features and mechanical properties of the joints were examined and discussed in detail. The results indicate that underwater FSW has reported lower hardness value in the HAZ and higher hardness value in the intermediate of stir zone (SZ). The average hardness value of underwater FSW increases about 53% greater than its base material (BM), while 21% greater than the normal FSW. The maximum micro-hardness value was three times greater than its base material (BM), and the mechanical properties of underwater FSW joint is increased compared to the normal FSW joint. Besides, the evaluated void-area fraction division in the SZ of underwater FSW joint was reduced and about one-third of the base material (BM). The approximately estimated average size of the voids in SZ of underwater FSW also was reduced to as low as 0.00073 mm2, when compared to normal FSW and BM with approximately estimated average voids size of 0.0024 mm2 and 0.0039 mm2, simultaneously.


2018 ◽  
Vol 1146 ◽  
pp. 38-43
Author(s):  
Ana Boşneag ◽  
Marius Adrian Constantin ◽  
Eduard Niţu ◽  
Cristian Ciucă

Friction Stir Welding, abbreviated FSW is an innovative joining process. The FSW is a solid-state welding process with a lot of advantages comparing to the traditional arc welding, such as the following: it uses a non-consumable tool, it results of good mechanical properties, it can use dissimilar materials and it have a low environmental impact. First of all, the FSW process was developed to join similar aluminum plates, and now, the technology was developed and the FSW process is used to weld large types of materials, similar or dissimilar. In this paper it is presented an experimental study and the results of it, which includes the welding of three dissimilar aluminum alloy, with different chemical and mechanical properties. This three materials are: AA2024, AA6061 and AA7075. The welding joints and the welding process were analyzed considering: process temperature, micro-hardness, macrostructure and microstructure.


2017 ◽  
Vol 867 ◽  
pp. 127-133 ◽  
Author(s):  
S. Shanavas ◽  
J. Edwin Raja Dhas

The welding of aluminium and its alloys was a great challenge for researchers and technologists till 1991. Friction stir welding (FSW), a relatively new solid state joining process was first patented in 1991 by Thomas et. al. from ‘The welding Institute (TWI), England. Later its application found in various industries like aerospace, marine, automobile, etc. due to its high quality joints. The technique is energy efficient, ecofriendly and versatile too. In this review article, the modeling and analysis of friction stir welding and underwater friction stir welding (UFSW) of aluminium alloy are addressed. Commonly used method for modeling and analysis of welded joints such as Taguchi method and Response surface method (RSM) are considered for the review. Finally an attempt has been made to compare UFSW welded joints with FSW welded joints.


2018 ◽  
Vol 775 ◽  
pp. 466-472 ◽  
Author(s):  
K. Tejonadha Babu ◽  
S. Muthukumaran ◽  
C. Bharat Kumar

Friction stir welding (FSW), a new joining process is finding extensive use in the welding of aluminum alloy sheets. The metal transfer modes in the FSW cause the quality of the weld and its properties. The first mode of metal transfer is accomplished by the tool and shoulder, while the second mode occurs around the pin. In the present study, two different welding conditions, which were friction stir welding in the air (CFSW) and underwater friction stir welding (UWFSW) carried out at various welding parameters to weld the AA5052-O aluminum alloy sheets and determine the consequence of the first mode on the tensile strength of welded joints. Considerable grain refinement and enhanced mechanical properties were obtained in UWFSW joints. It Is observed that the first mode affect the tensile strength of the joint, also found that a linear correlation between the first mode and the tensile strength.


2019 ◽  
Vol 48 (1) ◽  
pp. 37-46
Author(s):  
Akshansh Mishra ◽  
Devarrishi Dixit

Friction Stir Welding (FSW) is a solid state joining process which possesses a great potential to revolutionise the aerospace industries. Distinctive materials are selected as aerospace alloys to withstand higher temperature and loads. Sometimes these alloys are difficult to join by a conventional welding process but they are easily welded by FSW process. The FSW process in aerospace applications can be used for: aviation for fuel tanks, repair of faulty welds, cryogenic fuel tanks for space vehicles. Eclipse Aviation, for example, has reported dramatic production cost reductions with FSW when compared to other joining technologies. This paper will discuss about the mechanical and microstructure properties of various aerospace alloys which are joined by FSW process.


Friction Stir Welding (FSW) is a topical and propitious solid-state joining process producing economical and strengthened joints of age-hardened and heat-treatable Aluminium Alloy AA 6082-T6. Mechanical and fractural behaviour of weldments were investigated in order to find crack initiation and necking on the weld zone thereby perceiving the complete behaviour of fracture occurred near the weld zone. Weldments are fabricated by employing four tool pin profiles namely MX-TRIVEX, A-SKEW, Three flat threaded and Concave shouldered MX-TRIFLUTE tools at various rotational speeds 1000 rpm, 1200 rpm and 1400 rpm at single traverse speed 25 mm/min. EXCETEX-EX-40 CNC wire cut EDM with 0.25 mm brass wire diameter has been employed to perform the extraction of tensile test specimens from the weldments according to ASTM E8M-04 standard. Tensile test was performed on elctromechanically servo controlled TUE-C-200 (UTM machine) according to ASTM B557-16 standards Maximum Ultimate Tensile Strength (UTS) of 172.33 MPa (55.5% of base material) and 0.2% Yield Stress (YS) of 134.10 MPa (51.5% of base material) were obtained by using A-SKEW at 1400 rpm, 25 mm/min and maximum % Elongation (%El) of 11.33 (113.3% of base material) was obtained at MX-TRIVEX at 1000 rpm, 25 mm/min. Minimum UTS of 131.16 MPa (42.30% of base material) and 0.2% YS of 105.207 MPa (40.46% of base material )were obtained by using Concave shouldered MX-TRIFLUTE at 1400 rpm, 25 mm/min. Minimum % El of 5.42 ( 54.2% of base material) was obtained by using A-SKEW at 1000 rpm, 25 mm/min.


Sign in / Sign up

Export Citation Format

Share Document