Mechanical Properties of Gamma-Irradiated Natural Fiber Reinforced Composites

2018 ◽  
Vol 23 ◽  
pp. 24-38 ◽  
Author(s):  
Mohammad Shahriar Kabir ◽  
M. Sahadat Hossain ◽  
Monir Mia ◽  
Md. Nazru Islam ◽  
Md.Mahmudur Rahman ◽  
...  

Today we are facing a great problem due to the synthetic compounds, as most of them are not environmentally friendly. Natural fibers are the fibers which are obtained from the nature and these fibers are environment friendly. So the use of natural fiber is increasing day by day in different sectors. But natural fiber has some limitations for widely use, one of them is the hydrophilic nature. So it cannot be widely used. That is why we need to incorporate them with low mechanical property synthetic compounds, widely known as composite materials. When we are using natural fiber with polymeric materials by forming composites, the fiber properties greatly influence the strength or mechanical properties. So researchers are trying to reduce this weakness of the natural fiber reinforced composite materials. One of the widely used methods for the improvement of tensile properties is the application of radiation (gamma and UV). The control use of gamma and UV-radiation increases the tensile properties in some extent for the use of materials in practical applications. The reason of this increment in tensile properties is the high energy radiation making crosslink among the molecules. In all the respect of fiber reinforced composite highest tensile properties are observed at a certain dose of gamma and UV-radiation.

Nowadays, Natural Fiber Reinforced composites (NFCs) are emerging to be a good substitute for synthetic fiber reinforced composites as NFCs have many advantages such as low density, high specific strength, recyclability, low cost and good sound abatement quality etc. Among all types of NFCs, a vast study has been done on banana fiber and kenaf fiber reinforced composite. However, only limited work has been done on the banana fabric, kenaf fiber reinforced composite and the effect of their hybridization on mechanical properties. In this paper, an attempt has been made to study the mechanical properties of the banana fabric, kenaf fiber and hybrid banana fabric/kenaf fiber reinforced composites. Effect of alkali treatment on kenaf fiber reinforced composite is discussed in the paper. For the present work, plain-woven banana fabric and randomly oriented kenaf fiber are used as reinforcement while the epoxy resin is used as a matrix. samples are fabricated using hand lay-up and vacuum bagging method. Curing is done at ambient temperature (250C-300C) for 48h. Tensile, impact and hardness test has been performed on a specimen according to ASTM standards. Improvement in mechanical properties is observed after alkali (6% NaOH) treatment on kenaf fiber reinforced composite. Tensile testing behavior of randomly oriented kenaf fiber composite has been studied using Finite element method and results are compared with experimental investigations. This topic present big potential because it seeks to find solution for sustainable development with environmental concerns.


2019 ◽  
Vol 1 (1) ◽  
pp. 276-280
Author(s):  
Lenka Markovičová ◽  
Viera Zatkalíková ◽  
Patrícia Hanusová

Abstract Carbon fiber reinforced composite materials offer greater rigidity and strength than any other composites, but are much more expensive than e.g. glass fiber reinforced composite materials. Continuous fibers in polyester give the best properties. The fibers carry mechanical loads, the matrix transfers the loads to the fibers, is ductile and tough, protect the fibers from handling and environmental damage. The working temperature and the processing conditions of the composite depend on the matrix material. Polyesters are the most commonly used matrices because they offer good properties at relatively low cost. The strength of the composite increases along with the fiber-matrix ratio and the fiber orientation parallel to the load direction. The longer the fibers, the more effective the load transfer is. Increasing the thickness of the laminate leads to a reduction in the strength of the composite and the modulus of strength, since the likelihood of the presence of defects increases. The aim of this research is to analyze the change in the mechanical properties of the polymer composite. The polymer composite consists of carbon fibers and epoxy resin. The change in compressive strength in the longitudinal and transverse directions of the fiber orientation was evaluated. At the same time, the influence of the wet environment on the change of mechanical properties of the composite was evaluated.


2014 ◽  
Vol 984-985 ◽  
pp. 178-184
Author(s):  
K. Santhanam ◽  
A. Kumaravel

In the present work coconut sheath fiber has been used to prepare the composite material with epoxy resin. First the untreated coconut fiber was used to prepare the composite material then the coconut sheath fibers were treated with NAOH to modify the fiber properties. Then the effect of fiber loading and alkali treatment were evaluated and investigated. The mechanical properties of alkali treated fibers found to be higher than the untreated coconut sheath fiber reinforced composite materials. The water absorption properties of alkali treated fibers were found to be higher than the untreated coconut sheath fiber reinforced composite materials.


Author(s):  
Chad Braver ◽  
Matthew Tumey ◽  
Adam Harlow ◽  
Qingyou Han

The mechanical properties of fiber-reinforced composite materials are highly dependent on proper saturation of the resin within the reinforcement fibers. The research evaluates the effect of ultrasonic treatment during composite curing, in an effort to increase interlaminar bonding strength, lower void content, and improve the matrices ability to transfer stresses to the reinforcement fiber. The testing methods that were performed evaluated the effects or the ultrasonic treatment on the specimen in three point bending, and shear between layers of the matrix. The mechanical properties and the microstructure of the test specimen are discussed.


Sign in / Sign up

Export Citation Format

Share Document