Quantification of Crack-Tip Constraint Effect on Master Curve Reference Temperature Based on Two-Parameter Approach

2006 ◽  
Vol 110 ◽  
pp. 89-96 ◽  
Author(s):  
Nam Su Huh ◽  
Ludwig Stumpfrock ◽  
Xaver Schuler ◽  
Eberhard Roos

The master curve has evolved into a mature technology for characterizing the fracture toughness transition of ferritic steels. However, it is well known that the master curve reference temperature (To) values estimated from small laboratory specimen may be biased low due to loss of crack-tip constraint. To quantify such variations of To resulting from differences of crack-tip constraint of testing specimen, two-parameter fracture mechanics approaches are employed in the present study. In this context, fracture toughness test and 3-dimensional finite element (FE) analysis for several standard and nonstandard test specimens are performed to quantify relationship between variations of To and constraint parameters and to find best constraint parameter representing effect of crack-tip constraint on To values evidently. Based on testing and present FE results, To and constraint parameter loci are constructed and engineering To correlation models considering crack-tip constraint are suggested

Author(s):  
Dieter Siegele ◽  
Igor Varfolomeyev ◽  
Kim Wallin ◽  
Gerhard Nagel

Within the framework of the European research project VOCALIST, centre cracked tension, CC(T), specimens made of an RPV steel were tested and analysed to quantify the influence of local stress state on fracture toughness. The CC(T) specimens demonstrate a significant loss of crack tip constraint resulting in a considerable increase in fracture toughness as compared to standard fracture mechanics specimens. So, the master curve reference temperature, To, determined on the basis of CC(T) tests performed in this study is about 43°C lower than To obtained on standard C(T) specimens. Finite element analyses of the tests revealed that the above experimental finding is in a good agreement with the empirical correlations between the reference temperature shift and the crack tip constraint as characterised by the T-stress or Q parameter (Wallin, 2001; Wallin, 2004). The results of this work are consistent with a number of other tests performed within the VOCALIST project and contribute to the validation of engineering methods for the crack assessment in components taking account of constraint.


2004 ◽  
Vol 126 (4) ◽  
pp. 419-425 ◽  
Author(s):  
Nam-Su Huh ◽  
Yun-Jae Kim ◽  
Jae-Boong Choi ◽  
Young-Jin Kim ◽  
Chang-Ryul Pyo

One important element of the Leak-Before-Break analysis of nuclear piping is how to determine relevant fracture toughness (or the J-resistance curve) for nonlinear fracture mechanics analysis. The practice to use fracture toughness from a standard C(T) specimen is known to often give conservative estimates of toughness. To improve the accuracy of predicting piping failure, this paper proposes a new method to determine fracture toughness using a nonstandard testing specimen, curved wide-plate in tension. To show validity of the proposed curved wide-plate test, the J-resistance curve from the full-scale pipe test is compared with that from the curved wide-plate test and that from C(T) specimen. It is shown that the J-resistance curve from the curved wide-plate tension test is similar to, but that from the C(T) specimen is lower than, the J-resistance curve from the full-scale pipe test. Further validation is performed by investigating crack-tip constraint conditions via detailed three-dimensional finite element analyses, which shows that the crack-tip constraint condition in the curved wide-plate tension specimen is indeed similar to that in the full-scale pipe under bending.


Author(s):  
Zhong-An Chen ◽  
L. Y. Wang ◽  
Yuh-Jin Chao ◽  
Poh-Sang Lam ◽  
X. S. Jin

Neutron irradiation degrades the reactor pressure vessel (RPV) steels. As the steel degrades, the mechanical properties of the material also change which affect the crack tip stress fields. In this article, we show that reduction of the “fracture toughness” of the RPV steels due to neutron irradiation can be interpreted by a change of an “equivalent constraint” due to material property changes. Using the J-A2 two-parameter fracture methodology to quantify the crack tip stress fields and a critical stress fracture criterion, the methodology is applied to the interpretation of fracture toughness test data from un-irradiated and irradiated RPV steels.


Author(s):  
J. F. Zarzour ◽  
Y. Dah-Wei ◽  
M. J. Kleinosky

Abstract Single edge notched bars (SENB), in the bending mode, with a/W ratios ranging from 0.05 to 0.5 were examined for fracture toughness in terms of the J-integral approach. The results indicate that for a/W ratios less than 0.3, there is a significant loss of J-dominance. This loss is attributed to the effect of plastic deformation on the cracked face. For a/W ratios greater than 0.3, J-dominance is maintained into the large scale yielding regime. According to the recently developed two-parameter criterion (J,Q), compressive Q-stress was interpreted as an indication of low crack-tip stress triaxiality for shallow cracks, while positive Q-stress was associated with high crack-tip stress triaxiality for deep cracks. For the material properties and specimen geometries considered herein, a fracture toughness locus was constructed in terms of the (J,Q) parameters for each of the a/W ratios. The overall fracture data are in agreement with those predicted by other approaches and provide a rigorous framework for interpreting the effect of loss of crack-tip constraint in elastic-plastic fracture analyses.


Author(s):  
Xian-Kui Zhu ◽  
Tom McGaughy

Fracture toughness is an important material property in describing material resistance against fracture with a point value or in the format of a resistance curve. For ductile materials, the commonly used fracture parameters are the J-integral and the crack-tip opening displacement (CTOD, or δ). ASTM E1820 provides standard procedures for determining the JIc, δIc, J-R curve and δ-R curve using bending specimens with deep cracks. This usually leads to high crack-tip constraint conditions and conservative fracture resistance curves. Actual cracks found in pipelines and welds are often shallow and dominated by tensile forces, resulting in low constraint conditions and elevated resistance curves. Thus the standard resistance curves can be overly conservative for a shallow crack. To obtain realistic fracture toughness values to meet the practical needs for pipelines, different test methods have been developed using a single edge-notched tension (SENT) specimen. This includes the multiple specimen method, the single specimen method, the J-R curve test procedure, and the δ-R curve test procedure. This paper presents a critical technical review of existing fracture toughness test methods and procedures using SENT specimens, with discussions on the toughness estimation equation, key parameter calibration, rotation correction, and test procedure limitation. Historical efforts related to the SENT testing and applications of ASTM fracture test standards to the SENT specimens are also reviewed briefly.


Author(s):  
Toshiyuki Meshii

This paper considered the crack-tip constraint and fracture toughness of a semi-elliptical surface crack inside a hollow cylinder that experiences loss of coolant accident (LOCA). The magnitude of the crack-tip constraint was measured by evaluating the in and out of plane T-stress; i.e., T11. Results showed that T11 was negative at the deepest point, and that conservatism can be expected in using the fracture toughness obtained from standard fracture toughness test specimens. Finally, this conservatism was estimated quantitatively by applying a framework to correlate test specimen crack depth effect on fracture toughness with T-stresses.


Author(s):  
Hwee-Seung Lee ◽  
Nam-Su Huh ◽  
Ki-Seok Kim

One important element of fracture mechanics assessment in pipelines is how to determine the relevant fracture toughness (J-resistance or CTOD-resistance (crack-tip opening displacement)) for nonlinear fracture mechanics analysis. The general practice using a standard fracture mechanics specimen is known to often provide conservative estimates of toughness due to differences in crack-tip constraints between standard specimens and actual components. To improve the accuracy of predicting pipeline failure, various non-standard fracture mechanics specimens have been suggested over the past few decades. Among the several non-standard test specimens, a curved wide-plate in tension is often employed to predict fracture behavior of cracked components, for instance, in gas transportation pipelines. In order to show validity of a curved wide-plate in tension, the fracture toughness values from a full-scale pipeline test have been compared with those from a curved wide-plate in tension, and crack-tip constraints of a curved wide-plate in tension have also been compared with those of actual pipelines or other specimens during last decades. It is well known that a crack-tip constraint of test specimens, including curved wide-plates in tension, depends on many geometric and material parameters, for instance, crack length, thickness and width of specimen and material’s hardening characteristic. Thus, in order to obtain relevant fracture resistance from a curved wide-plate in tension representing accurate crack-tip constraint of pipeline of interest, variations of crack-tip constraints of curved wide-plates in tension according to various in-plane and out-of-plane constraint conditions should systematically be quantified. In the present study, systematic 3-dimensional finite element analyses attempt to investigate the effect of in-plane and out-of-plane parameters on crack-tip constraints of a curved wide-plate in tension.


Author(s):  
Marjorie Erickson

Abstract The current best-estimate model describing the fracture toughness of ferritic steels is the Master Curve methodology standardized in ASTM E1921. Shortly following standardization by ASTM, efforts were undertaken to incorporate this best-estimate model into the framework of the ASME Code to reduce the conservatisms resulting from use of a reference temperature based on the nil-ductility temperature (RTNDT) to index the plane strain fracture initiation toughness (KIc). The reference temperature RTT0, which is based on the ASTM E1921-defined T0 value, was introduced in ASME Code Cases N-629 (replaced by Code Case N-851) and N-631 to replace RTNDT for indexing the ASME KIc curve. Efforts are continuing within the ASME Code to implement direct use of the Master Curve model; using the T0 reference temperature to index an elastic-plastic, KJc fracture toughness curve. Transitioning to a direct T0-based fracture toughness assessment methodology requires the availability of T0 estimates for all materials to be assessed. The historical Charpy and NDT-based regulatory approach to characterizing toughness for reactor pressure vessel (RPV) steels results in a lack of T0 values for a large population of the US nuclear fleet. The expense of the fracture toughness testing required to estimate a valid T0 value makes it unlikely that T0 will ever be widely available. Since direct implementation of best-estimate, fracture toughness models in codes and regulatory actions requires an estimate of T0 for all materials of interest it is necessary to develop an alternative means of estimating T0. A project has been undertaken to develop a combined model approach to estimating T0 from data that may include limited elastic-plastic fracture toughness KJc, Charpy, tensile, ductile initiation toughness, arrest toughness, and/or nil-ductility temperature data. Using correlations between these properties and T0 a methodology for combining estimates of T0 from several sources of data was developed. T0 estimates obtained independently from the Master Curve model, the Simple T28J correlation model, and a more complex Charpy correlation model were combined using the Mixture Probability Density Function (PDF) method to provide a single estimate for T0. Using this method, the individual T0 estimates were combined using weighting factors that accounted for sample size and individual model accuracy to optimize the accuracy and precision of the combined T0 estimate. Combining weighted estimates of T0 from several sources of data was found to provide a more refined estimate of T0 than could be obtained from any of the models alone.


Sign in / Sign up

Export Citation Format

Share Document