Specific Features of Brillouin Spectra at a High-Temperature Phase Transition in Cs5H3(SO4)4xnH2O Crystals

2006 ◽  
Vol 115 ◽  
pp. 279-284 ◽  
Author(s):  
A.I. Fedoseev ◽  
S.G. Lushnikov ◽  
J.H. Ko ◽  
Seiji Kojima ◽  
L.A. Shuvalov

This paper presents detailed Brillouin light scattering studies of the acoustic response of a Cs5H3(SO4)4xnH2O (PCHS) crystal in the vicinity of a superionic (superprotonic) structural phase transition of the first order. Just above the phase transition, splitting of the Brillouin doublet is observed. The ‘two-mode’ behavior of the longitudinal acoustic phonon can be explained by coexistence of phases at a structural phase transition of the first order. Above the phase transition, in the superionic phase, an additional doublet forbidden by the selection rules appears in a narrow temperature interval. It is concluded that an anomalous behavior of Brillouin light scattering can be attributed to the influence of dynamically disordered protons on the phonon subsystem.

RSC Advances ◽  
2016 ◽  
Vol 6 (73) ◽  
pp. 69546-69550 ◽  
Author(s):  
Tariq Khan ◽  
Muhammad Adnan Asghar ◽  
Zhihua Sun ◽  
Chengmin Ji ◽  
Lina Li ◽  
...  

We report an organic–ionic material that undergoes a first-order structural phase transition, induced by order–disorder of oxygen atoms in picrate anion. This strategy offers a potential pathway to explore new switchable dielectric materials.


2014 ◽  
Vol 47 (2) ◽  
pp. 701-711 ◽  
Author(s):  
Oxana V. Magdysyuk ◽  
Melanie Müller ◽  
Robert E. Dinnebier ◽  
Christian Lipp ◽  
Thomas Schleid

The high-temperature phase transition of LuF[SeO3] has been characterized by time-resolved high-resolution synchrotron powder diffraction. On heating, a second-order structural phase transition was found at 393 K, while on cooling the same phase transition occurs at 371 K, showing a large hysteresis typical for a first-order phase transition. Detailed analysis using sequential and parametric whole powder pattern fitting revealed that the coupling between the strain and the displacive order parameter determines the behaviour of the material during the phase transition. Different possible coupling mechanisms have been evaluated and the most probable rationalized.


2020 ◽  
Vol 1 (9) ◽  
pp. 3167-3170 ◽  
Author(s):  
Jorge Salgado-Beceiro ◽  
Ariel Nonato ◽  
Rosivaldo Xavier Silva ◽  
Alberto García-Fernández ◽  
Manuel Sánchez-Andújar ◽  
...  

We report giant reversible barocaloric effects in [(CH3)4N]Mn[N3]3 hybrid organic–inorganic perovskite, near its first-order cubic-monoclinic structural phase transition at T0 ∼ 305 K.


2000 ◽  
Vol 55 (9-10) ◽  
pp. 759-764 ◽  
Author(s):  
E. Mikuli ◽  
A. Migdał-Mikuli ◽  
I. Natkaniec ◽  
J. Mayer

Abstract DSC measurements performed at 95 -290 K have shown that [Mn(H 2 O) 6 ](CIO 4) 2 possesses, besides a high-temperature phase, existing above 323 K, four low-temperature solid phases. The inelastic incoherent neutron scattering (IINS) spectra and neutron powder diffraction (NPD) pat-terns registered at 20 -290 K have supported the DSC results and provided evidence that the investigated substance possesses even more than five solid phases. The IINS spectra have shown that in the room-temperature phase, water molecules perform fast stochastic reorientation at the picosecond scale. The orientational disorder characteristic for the room-temperature phase can be easily overcooled and frozen. Even by relatively slow cooling at ca. 40 K/hour a metastable, orientational (protonic) glass phase is formed below ca. 160 K. Below ca. 100 K, a structural phase transition was observed by the NPD, however the IINS spectra indicate existence of the pure ordered low-temperature phase only after annealing the sample for a few hours at 100 K. On heating, a structural phase transition takes place at ca. 120 K, and at ca. 225 K water molecules begin fast reorientation.


2000 ◽  
Vol 64 (2) ◽  
pp. 291-300 ◽  
Author(s):  
K. S. Knight

AbstractHigh-resolution, neutron time-of-flight, powder diffraction data have been collected on natural crocoite between 873 and 1073 K. Thermal analysis carried out in the 1920s had suggested that chemically pure PbCrO4 exhibited two structural phase transitions, at 964 K, to the β phase, and at 1056 K, to the γ phase. In this study, no evidence was found for the α-β structural phase transition, however a high-temperature phase transition was found at ∼1068 K from the ambient-temperature monazite structure type to the baryte structure type. The phase transition, close to the temperatures reported for the β to γ phase modifications, is first order and is accompanied by a change in volume of −1.6%. The crystal structure of this phase has been refined using the Rietveld method to agreement factors of Rp = 0.018, Rwp = 0.019, Rp = 0.011. No evidence for premonitory behaviour was found in the temperature dependence of the monoclinic lattice constants rom 873 K to 1063 K and these have been used to determine the thermal expansion tensor of crocoite just below the phase transition. At 1000 K the magnitudes of the tensor coefficients are α11, 2.66(1) × 10−5 K−1; α22, 2.04(1) × 10−5 K−1; α33, 4.67(4) × 10−5 K−1; and α13, −1.80(2) × 10−5 K−1 using the IRE convention for the orientation of the tensor basis. The orientation of the principal axes of the thermal expansion tensor are very close to those reported previously for the temperature range 50–300 K.


Sign in / Sign up

Export Citation Format

Share Document