Structural phase transition and high temperature phase structure of Friedels salt, 3CaO · Al2O3 · CaCl2 · 10H2O

1999 ◽  
Vol 29 (12) ◽  
pp. 1937-1942 ◽  
Author(s):  
G. Renaudin ◽  
F. Kubel ◽  
J.-P. Rivera ◽  
M. Francois
2000 ◽  
Vol 64 (2) ◽  
pp. 291-300 ◽  
Author(s):  
K. S. Knight

AbstractHigh-resolution, neutron time-of-flight, powder diffraction data have been collected on natural crocoite between 873 and 1073 K. Thermal analysis carried out in the 1920s had suggested that chemically pure PbCrO4 exhibited two structural phase transitions, at 964 K, to the β phase, and at 1056 K, to the γ phase. In this study, no evidence was found for the α-β structural phase transition, however a high-temperature phase transition was found at ∼1068 K from the ambient-temperature monazite structure type to the baryte structure type. The phase transition, close to the temperatures reported for the β to γ phase modifications, is first order and is accompanied by a change in volume of −1.6%. The crystal structure of this phase has been refined using the Rietveld method to agreement factors of Rp = 0.018, Rwp = 0.019, Rp = 0.011. No evidence for premonitory behaviour was found in the temperature dependence of the monoclinic lattice constants rom 873 K to 1063 K and these have been used to determine the thermal expansion tensor of crocoite just below the phase transition. At 1000 K the magnitudes of the tensor coefficients are α11, 2.66(1) × 10−5 K−1; α22, 2.04(1) × 10−5 K−1; α33, 4.67(4) × 10−5 K−1; and α13, −1.80(2) × 10−5 K−1 using the IRE convention for the orientation of the tensor basis. The orientation of the principal axes of the thermal expansion tensor are very close to those reported previously for the temperature range 50–300 K.


Author(s):  
Bi-Qin Wang ◽  
Hai-Biao Yan ◽  
Zheng-Qing Huang ◽  
Zhi Zhang

A new metal–formate framework, poly[1H-imidazol-3-ium [tri-μ2-formato-manganese(II)]], {(C3H5N2)[Mn(HCOO)3]}n, was synthesized and its structural phase transition was studied by thermal analysis and variable-temperature X-ray diffraction analysis. The transition temperature is around 435 K. The high-temperature phase is tetragonal and the low-temperature phase is monoclinic, with a β angle close to 90°. The relationship of the unit cells between the two phases can be described as:aHT= 0.5aLT+ 0.5bLT;bHT= −0.5aLT+ 0.5bLT;cHT = 0.5cLT. In the high-temperature phase, both the framework and the guest 1H-imidazol-3-ium (HIm) cations are disordered; the HIm cations are located about 2mmsites and were modelled as fourfold disordered. The Mn and a formate C atom are located on fourfold rotary inversion axes, while another formate C atom is on a mirror plane. The low-temperature structure is ordered and consists of two crystallographically independent HIm cations and two crystallographically independent Mn2+ions. The phase transition is attributable to the order–disorder transition of the HIm cations.


2016 ◽  
Vol 72 (12) ◽  
pp. 971-980 ◽  
Author(s):  
Tze Shyang Chia ◽  
Ching Kheng Quah

As a function of temperature, the hexamethylenetetramine–2-methylbenzoic acid (1/2) cocrystal, C6H12N4·2C8H8O2, undergoes a reversible structural phase transition. The orthorhombic high-temperature phase in the space groupPccnhas been studied in the temperature range between 165 and 300 K. At 164 K, at2phase transition to the monoclinic subgroupP21/cspace group occurs; the resulting twinned low-temperature phase was investigated in the temperature range between 164 and 100 K. The domains in the pseudomerohedral twin are related by a twofold rotation corresponding to the matrix (100/0-10/00-1. Systematic absence violations represent a sensitive criterium for the decision about the correct space-group assignment at each temperature. The fractional volume contributions of the minor twin domain in the low-temperature phase increases in the order 0.259 (2) → 0.318 (2) → 0.336 (2) → 0.341 (3) as the temperature increases in the order 150 → 160 → 163 → 164 K. The transformation occurs between the nonpolar point groupmmmand the nonpolar point group 2/m, and corresponds to a ferroelastic transition or to at2structural phase transition. The asymmetric unit of the low-temperature phase consists of two hexamethylenetetramine molecules and four molecules of 2-methylbenzoic acid; it is smaller by a factor of 2 in the high-temperature phase and contains two half molecules of hexamethylenetetramine, which sit across twofold axes, and two molecules of the organic acid. In both phases, the hexamethylenetetramine residue and two benzoic acid molecules form a three-molecule aggregate; the low-temperature phase contains two of these aggregates in general positions, whereas they are situated on a crystallographic twofold axis in the high-temperature phase. In both phases, one of these three-molecule aggregates is disordered. For this disordered unit, the ratio between the major and minor conformer increases upon cooling from 0.567 (7):0.433 (7) at 170 Kvia0.674 (6):0.326 (6) and 0.808 (5):0.192 (5) at 160 K to 0.803 (6):0.197 (6) and 0.900 (4):0.100 (4) at 150 K, indicating temperature-dependent dynamic molecular disorder. Even upon further cooling to 100 K, the disorder is retained in principle, albeit with very low site occupancies for the minor conformer.


2017 ◽  
Vol 5 (33) ◽  
pp. 8509-8515 ◽  
Author(s):  
Shiguo Han ◽  
Jing Zhang ◽  
Bing Teng ◽  
Chengmin Ji ◽  
Weichuan Zhang ◽  
...  

We reported an inorganic–organic switchable dielectric hybrid, which shows the coexistence of magnetic responses as another potential physical channel to structural phase transition.


2006 ◽  
Vol 115 ◽  
pp. 279-284 ◽  
Author(s):  
A.I. Fedoseev ◽  
S.G. Lushnikov ◽  
J.H. Ko ◽  
Seiji Kojima ◽  
L.A. Shuvalov

This paper presents detailed Brillouin light scattering studies of the acoustic response of a Cs5H3(SO4)4xnH2O (PCHS) crystal in the vicinity of a superionic (superprotonic) structural phase transition of the first order. Just above the phase transition, splitting of the Brillouin doublet is observed. The ‘two-mode’ behavior of the longitudinal acoustic phonon can be explained by coexistence of phases at a structural phase transition of the first order. Above the phase transition, in the superionic phase, an additional doublet forbidden by the selection rules appears in a narrow temperature interval. It is concluded that an anomalous behavior of Brillouin light scattering can be attributed to the influence of dynamically disordered protons on the phonon subsystem.


1996 ◽  
Vol 52 (a1) ◽  
pp. C364-C364
Author(s):  
J. A. Guevara ◽  
S. L. Cuffini ◽  
Y. P. Mascarenhas ◽  
P. de la Presa ◽  
A. Ayala ◽  
...  

2014 ◽  
Vol 47 (2) ◽  
pp. 701-711 ◽  
Author(s):  
Oxana V. Magdysyuk ◽  
Melanie Müller ◽  
Robert E. Dinnebier ◽  
Christian Lipp ◽  
Thomas Schleid

The high-temperature phase transition of LuF[SeO3] has been characterized by time-resolved high-resolution synchrotron powder diffraction. On heating, a second-order structural phase transition was found at 393 K, while on cooling the same phase transition occurs at 371 K, showing a large hysteresis typical for a first-order phase transition. Detailed analysis using sequential and parametric whole powder pattern fitting revealed that the coupling between the strain and the displacive order parameter determines the behaviour of the material during the phase transition. Different possible coupling mechanisms have been evaluated and the most probable rationalized.


Sign in / Sign up

Export Citation Format

Share Document