scholarly journals Near-room-temperature reversible giant barocaloric effects in [(CH3)4N]Mn[N3]3 hybrid perovskite

2020 ◽  
Vol 1 (9) ◽  
pp. 3167-3170 ◽  
Author(s):  
Jorge Salgado-Beceiro ◽  
Ariel Nonato ◽  
Rosivaldo Xavier Silva ◽  
Alberto García-Fernández ◽  
Manuel Sánchez-Andújar ◽  
...  

We report giant reversible barocaloric effects in [(CH3)4N]Mn[N3]3 hybrid organic–inorganic perovskite, near its first-order cubic-monoclinic structural phase transition at T0 ∼ 305 K.

RSC Advances ◽  
2016 ◽  
Vol 6 (73) ◽  
pp. 69546-69550 ◽  
Author(s):  
Tariq Khan ◽  
Muhammad Adnan Asghar ◽  
Zhihua Sun ◽  
Chengmin Ji ◽  
Lina Li ◽  
...  

We report an organic–ionic material that undergoes a first-order structural phase transition, induced by order–disorder of oxygen atoms in picrate anion. This strategy offers a potential pathway to explore new switchable dielectric materials.


2022 ◽  
Vol 130 (1) ◽  
pp. 116
Author(s):  
В.Е. Аникеева ◽  
К.Н. Болдырев ◽  
О.И. Семенова ◽  
М.Н. Попова

The paper presents the transmission spectra of hybrid perovskite MAPbI3 single crystals near the fundamental absorption edge in a wide temperature range. The absorption coefficient α of the single crystal samples is estimated at a temperature T = 150 K for the light with a photon energy E = 1.6 eV and at T = 40 K for E = 1.8 eV. The obtained values turned out to be several orders of magnitude smaller than the values of α for thin-film samples known from the literature. A sharp shift of the fundamental absorption edge by ~ 100 meV was observed at a temperature T1 = 160 K of the structural phase transition from the tetragonal to the orthorhombic phase. The temperature hysteresis of the shift of the fundamental absorption edge near T1 was recorded, which is characteristic of a first-order phase transition.


2000 ◽  
Vol 55 (9-10) ◽  
pp. 759-764 ◽  
Author(s):  
E. Mikuli ◽  
A. Migdał-Mikuli ◽  
I. Natkaniec ◽  
J. Mayer

Abstract DSC measurements performed at 95 -290 K have shown that [Mn(H 2 O) 6 ](CIO 4) 2 possesses, besides a high-temperature phase, existing above 323 K, four low-temperature solid phases. The inelastic incoherent neutron scattering (IINS) spectra and neutron powder diffraction (NPD) pat-terns registered at 20 -290 K have supported the DSC results and provided evidence that the investigated substance possesses even more than five solid phases. The IINS spectra have shown that in the room-temperature phase, water molecules perform fast stochastic reorientation at the picosecond scale. The orientational disorder characteristic for the room-temperature phase can be easily overcooled and frozen. Even by relatively slow cooling at ca. 40 K/hour a metastable, orientational (protonic) glass phase is formed below ca. 160 K. Below ca. 100 K, a structural phase transition was observed by the NPD, however the IINS spectra indicate existence of the pure ordered low-temperature phase only after annealing the sample for a few hours at 100 K. On heating, a structural phase transition takes place at ca. 120 K, and at ca. 225 K water molecules begin fast reorientation.


2016 ◽  
Vol 4 (4) ◽  
pp. 780-792 ◽  
Author(s):  
Smita Chaturvedi ◽  
Rabindranath Bag ◽  
Vasant Sathe ◽  
Sulabha Kulkarni ◽  
Surjeet Singh

Ho-doped sample simultaneously exhibits high-coercivity and enhanced remnant magnetization with a polar R3c symmetry at room temperature. The onset of R3c to Pnma phase transition is observed at high temperatures in the Ho-doped samples.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
P. S. Whitfield ◽  
N. Herron ◽  
W. E. Guise ◽  
K. Page ◽  
Y. Q. Cheng ◽  
...  

Abstract We have examined the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q ∼ (Tc−T)β, where Tc is the critical temperature and the exponent β was close to ¼, as predicted for a tricritical phase transition. However, we also observed coexistence of the cubic and tetragonal phases over a range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI3 based solar cells.


2007 ◽  
Vol 06 (05) ◽  
pp. 399-401 ◽  
Author(s):  
A. I. ORESHKIN ◽  
J. T. SADOWSKI ◽  
T. NAGAO ◽  
S. YAGINUMA ◽  
Y. FUJIKAWA ◽  
...  

The results of investigation of the room temperature growth of thin Bi films on Si (111)-7 × 7 are present. In the initial stage of Bi film growth the rotationally disordered, pseudo-cubic, Bi {012} islands with a uniform height of 13 Å are formed. With increasing bismuth on the surface, islands interconnect, maintaining however their uniform height, and structural phase transition of the {012} film into a hexagonal Bi (001) film takes place.


Sign in / Sign up

Export Citation Format

Share Document