scholarly journals Can Impurities be Beneficial to Photovoltaics?

2009 ◽  
Vol 156-158 ◽  
pp. 107-114
Author(s):  
Antonio Luque ◽  
Antonio Martí

The state of the art of the intermediate band solar cells is presented with emphasis on the use of impurities or alloys to form bulk intermediate band materials. Quantum dot intermediate band solar cells start to present already attractive efficiencies but many difficulties jeopardize the immediate achievement of record efficiency cells. To complement this research it is worthwhile examining bulk materials presenting an IB. Four or perhaps more materials have already proven to have it and several paths for the research of more are today open but no solar cell has yet been published based on them. This topic has already attracted many researches and abundant funds for their development worldwide.

2010 ◽  
Vol 74 ◽  
pp. 143-150 ◽  
Author(s):  
Antonio Martí ◽  
Antonio Luque

Intermediate band (IB) solar cells aim to exploit in solar cells the energy of below bandgap energy photons. They are based in a material that, in addition to the conventional conduction and valence bands, has an electronic band (named intermediate band) located inside the bandgap and separated from the conduction and valence band by a null density of states. The theoretical limiting efficiency of these cells (63.2 % at maximum concentration) is equivalent to a triple junction solar cell but requiring a single material instead. Several approaches are being followed worldwide to take to practice this concept that can be divided into two categories: quantum dots and bulk materials. This paper reviews the main experimental results obtained under both approaches.


2013 ◽  
Vol 1551 ◽  
pp. 137-142
Author(s):  
Neil S. Beattie ◽  
Guillaume Zoppi ◽  
Ian Farrer ◽  
Patrick See ◽  
Robert W. Miles ◽  
...  

ABSTRACTThe device performance of GaAs p-i-n solar cells containing stacked layers of self-assembled InAs quantum dots is investigated. The solar cells demonstrate enhanced external quantum efficiency below the GaAs band gap relative to a control device without quantum dots. This is attributed to the capture of sub-band gap photons by the quantum dots. Analysis of the current density versus voltage characteristic for the quantum dot solar cell reveals a decrease in the series resistance as the device area is reduce from 0.16 cm2 to 0.01 cm2. This is effect is not observed in control devices and is quantum dot related. Furthermore, low temperature measurements of the open circuit voltage for both quantum dot and control devices provide experimental verification of the conditions required to realise an intermediate band gap solar cell.


Sign in / Sign up

Export Citation Format

Share Document