scholarly journals About the Surface Hardening of Tool Steels by Electrical Discharge Treatment in Electrolyte

2010 ◽  
Vol 159 ◽  
pp. 137-140 ◽  
Author(s):  
Dimitar Krastev ◽  
Boyan Yordanov

In this study are given some results about the influence of electrical discharge treatment in electrolyte on the microstructure of high speed steel HS 6-5-2. The metallic surface after electrical discharge treatment in electrolyte has a different structure in comparison with the metal matrix, which determines different properties. It is observed remarkable increasing of hardness, strength and corrosion resistance related to the nonequilibrium phase transformations and the obtained finecrystalline microstructure.

Alloy Digest ◽  
2002 ◽  
Vol 51 (5) ◽  

Abstract NIROSTA 4305 is an austenitic alloy with a high sulfur content. The alloy is typically used for machined parts. As with other austenitic steels, it is necessary to machine with good-quality high-speed steel or tungsten carbide tools. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-854. Producer or source: ThyssenKrupp Nirosta GmbH.


Alloy Digest ◽  
1965 ◽  
Vol 14 (2) ◽  

Abstract Cyclops BHT is a low-alloy martensitic high-speed steel of the molybdenum type recommended for high strength, high load structural components designed for elevated temperature service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-173. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1992 ◽  
Vol 41 (2) ◽  

Abstract LESCALLOY BG42 VIM-VAR is a martensitic stainless high-speed steel that combines the temper resistance and hot hardness characteristics of M-50 high-speed steel with the corrosion resistance of AISI Type 440C stainless steel. (See also LESCALLOY BG42, Alloy Digest SS-280, October 1972.) This datasheet provides information on composition, physical properties, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: SS-179. Producer or source: Latrobe Steel Company. Originally published as Lesco BG42, March 1966, revised February 1992. See also Alloy Digest SS-356, October 1978.


2019 ◽  
Vol 18 (5) ◽  
pp. 369-379
Author(s):  
A. S. Kalinichenko ◽  
V. I. Ovchinnikov ◽  
S. M. Usherenko ◽  
Javad F. Yazdani-Cherati

The influence of high-speed particle fluxes on changes in the structure and properties of materials has been widely studied currently. The effect exerted by particles moving at very high speeds can have both negative (in spacecrafts) and positive character (dynamic processing of tool steels). Therefore a task for studying an effect of high-speed particle flows on structure change in tool steels and improving their performance properties has been set in the paper. The study has used an explosive method for creation of a high-speed flow of SiC + Ni and Al2O3 particles. Samples after dynamic alloying have been subjected to diffusion nitriding. Microstructure of specimens made of X12M, R18, R6M5K5steel has been studied using optical and electron metallography. Wear resistance of the samples has been also tested on a friction machine. Theoretical and experimental results on a complex effect of high-speed microparticle flows and nitriding on a structure and properties of tool steels have been obtained during the research. It has been established that dynamic alloying by particles leads to formation of a specific structure in a composite material reinforced with channels. Central fiber (channel) zone with powder particles residues is surrounded by areas of amorphous state which is succeeded by a zone with a nanocrystalline fragmented cellular structure. Then we observe a zone with a microcrystalline structure that transits to a zone with crystalline structure which is characteristic for a matrix material of structural steel. The obtained data can expand and complement some ideas about mechanisms for dynamic loading of solids and condensed matter, plastic deformation, physical mechanics of structurally inhomogeneous media at different levels, a number of effects arising from collision and ultra-deep penetration of microparticles into metals. It has been shown that wear resistance of high-speed steel subjected to dynamic alloying in the quenched state is increased by 1.2 times in comparison with wear resistance of steel alloyed in the annealing state.


2016 ◽  
Vol 861 ◽  
pp. 9-13
Author(s):  
Hong Jian Dong ◽  
Qin He Zhang ◽  
Lei Tan ◽  
Guo Wei Liu ◽  
Tuo Dang Guo

As a kind of commonly used tools, junior hacksaw plays an important role in our daily life. A new kind of bimetal band saw taken low carbon medium alloy steel X32 as the backing material and the high-speed steel M42 as the saw tooth material is developed. In this paper, a new method to machine the bimetal band saw with wire electrical discharge machining (WEDM) is introduced. The processing route for common tooth profile is calculated. The fixture with specific angles is designed with CAD software (proe5.0) and machined with 3D printing technology. The experiments show that bimetal band saw machined with WEDM method has better surface quality compared with that machined through the traditional grinding process. Without any burrs, the new bimetal band saw is more resistant to wear and has a longer service life.


1999 ◽  
Vol 3 (1) ◽  
pp. 91-105 ◽  
Author(s):  
S. K. Choudhury ◽  
V. K. Jain ◽  
M. Gupta

2019 ◽  
Vol 823 ◽  
pp. 75-79
Author(s):  
Yen Liang Su ◽  
Sun Hui Yao ◽  
Yi Ru Wu

Amorphous carbonitride coatings (a-C:N and a-C:N:H) with dopant of niobium (Nb) were deposited on substrates of JIS SKH51 high speed steel (HSS) by a four-target close-field unbalance magnetron sputtering system. Subsequently, they were characterized by GDOS, XRD and XPS, and their corrosion resistance was comparatively evaluated. An electro-chemical tester was used to evaluate the corrosive behavior. An SEM was used to examine the test surface. The results revealed that the Nb dopant provided improvements in the corrosive performance to both the a-C:N and a-C:N:H coatings.


Sign in / Sign up

Export Citation Format

Share Document