Influence of Niobium Dopant on the Corrosion Resistance of a-C:N and a-C:N:H Coatings

2019 ◽  
Vol 823 ◽  
pp. 75-79
Author(s):  
Yen Liang Su ◽  
Sun Hui Yao ◽  
Yi Ru Wu

Amorphous carbonitride coatings (a-C:N and a-C:N:H) with dopant of niobium (Nb) were deposited on substrates of JIS SKH51 high speed steel (HSS) by a four-target close-field unbalance magnetron sputtering system. Subsequently, they were characterized by GDOS, XRD and XPS, and their corrosion resistance was comparatively evaluated. An electro-chemical tester was used to evaluate the corrosive behavior. An SEM was used to examine the test surface. The results revealed that the Nb dopant provided improvements in the corrosive performance to both the a-C:N and a-C:N:H coatings.

Alloy Digest ◽  
2002 ◽  
Vol 51 (5) ◽  

Abstract NIROSTA 4305 is an austenitic alloy with a high sulfur content. The alloy is typically used for machined parts. As with other austenitic steels, it is necessary to machine with good-quality high-speed steel or tungsten carbide tools. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-854. Producer or source: ThyssenKrupp Nirosta GmbH.


Alloy Digest ◽  
1965 ◽  
Vol 14 (2) ◽  

Abstract Cyclops BHT is a low-alloy martensitic high-speed steel of the molybdenum type recommended for high strength, high load structural components designed for elevated temperature service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-173. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1992 ◽  
Vol 41 (2) ◽  

Abstract LESCALLOY BG42 VIM-VAR is a martensitic stainless high-speed steel that combines the temper resistance and hot hardness characteristics of M-50 high-speed steel with the corrosion resistance of AISI Type 440C stainless steel. (See also LESCALLOY BG42, Alloy Digest SS-280, October 1972.) This datasheet provides information on composition, physical properties, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: SS-179. Producer or source: Latrobe Steel Company. Originally published as Lesco BG42, March 1966, revised February 1992. See also Alloy Digest SS-356, October 1978.


2010 ◽  
Vol 66 ◽  
pp. 35-40 ◽  
Author(s):  
Erdem Baskurt ◽  
Tolga Tavşanoğlu ◽  
Yücel Onüralp

SiC films were deposited by reactive DC magnetron sputtering of high purity (99.999%) Si target. 3 types of substrates, AISI M2 grade high speed steel, glass and Si (100) wafer were used in each deposition. The effect of different CH4 flow rates on the microstructural properties and surface morphologies were characterized by cross-sectional FE-SEM (Field-Emission Scanning Electron Microscope) observations. SIMS (Secondary Ion Mass Spectrometer) depth profile analysis showed that the elemental film composition was constant over the whole film depth. XRD (X-Ray Diffraction) results indicated that films were amorphous. Nanomechanical properties of SiC films were also investigated.


1990 ◽  
Vol 190 (2) ◽  
pp. 265-277 ◽  
Author(s):  
M.Y. Al-Jaroudi ◽  
H.T.G. Hentzell ◽  
S.E. Hörnström ◽  
A. Bengtson

Materia Japan ◽  
2009 ◽  
Vol 48 (1) ◽  
pp. 35-37
Author(s):  
Keisuke Shimizu ◽  
Yasushi Haruna ◽  
Syun-ichiro Nishikawa ◽  
Noriyuki Umano

2011 ◽  
Vol 675-677 ◽  
pp. 1307-1310 ◽  
Author(s):  
Xiao Hong Yao ◽  
Bin Tang ◽  
Lin Hai Tian ◽  
Xiao Fang Li ◽  
Yong Ma

TiN coating with thickness of 2.5μm was deposited on high-speed steel (HSS) substrate by pulsed bias cathodic arc ion plating. The surface and cross-section morphologies, composition depth profile and phase structure were characterized by FESEM, GDOES and XRD, respectively. Scratch test for adhesion evaluation, microhardness test for hardness measurement, and potentiodynamic polarization for corrosion resistance test were used. The results show that the TiN coating exhibits smooth surface, dense columnar grain structure and an obviously preferred orientation of TiN(111). The adhesion of the coating to substrate is exceeded more than 100N. The hardness of the coating is about 26 GPa. The low corrosion current density (Icorr) and rather high corrosion potential (Ecorr) value imply that the TiN coating displays a good corrosion resistance in 0.5mol/l NaCl solution. However, pitting is still existed due to the defects in the coating.


2012 ◽  
Vol 562-564 ◽  
pp. 619-622
Author(s):  
Ji Ming Xiao ◽  
Li Jing Bai ◽  
Yan Li ◽  
Jian Ming Zheng ◽  
Qi Long Yuan

High-speed steel (HSS) turning tools was designed and sharpened according to the angles of the complex shape cutting tools. CrAlTiN coating was deposited using unbalance magnetron sputtering plating technique. By dry turning tests, the wear characteristics and wear mechanisms of the face were investigated. The results show that the face wear of the coated HSS tools is obviously different from that of the uncoated tools, the crater width is smaller, the boundary is jagged and the lowest position is away from the major cutting edge. Adhesive wear and local adhesive wear are the main wear mechanisms.


2009 ◽  
Vol 69-70 ◽  
pp. 515-519 ◽  
Author(s):  
Yun Xian Cui ◽  
Bao Yuan Sun ◽  
W.Y. Ding ◽  
F.D. Sun

In the paper, a new multilayer composition thin film thermocouple was developed, which can accurately measure the temperature nearby cutting edge in convenient and fast ways. By means of advanced Twinned microwave ECR plasma source enhanced Radio Frequency (RF) reaction non-balance magnetron sputtering technique, SiO2 insulating film, NiCr/NiSi sensor film and SiO2 protecting film were deposited on the surface HSS substrate. Both static calibration and dynamic calibration were completed. The results showed that the sensor had good performance, good linearity, quick dynamic response, response time constant was 12.7ms. The temperature near the cutting edge in cutting process of aluminum alloy was measured by the developed sensor. The bonding strength between multiple layer film and substrate of high-speed-steel met the presupposed demands.


Sign in / Sign up

Export Citation Format

Share Document