Stress Corrosion Cracking of 5083 and 7020 Aluminium Alloys Jointed by Friction Stir Welding

2010 ◽  
Vol 165 ◽  
pp. 37-42 ◽  
Author(s):  
Krzysztof Dudzik ◽  
Mirosław Czechowski

Friction stir welding (FSW) joints of AW 5083 and AW 5059 alloys were used for the study. Mechanical properties, resistance to stress corrosion cracking (SCC) were investigated and metallographic tests were performed using an optical and scanning microscope (SEM). The parameters of friction welding are also given. Stress corrosion was investigated by the method of slow strain rate testing (SSRT) in air and 4.5% NaCl aqueous solution. During SCC tests elongation, strength, fracture energy and time to break were measured. Very good strength of the tested alloys was found with good resistance to stress corrosion cracking. The aim of the study was to determine the possibility of using the AW 5059 and AW 5083 friction welded (FSW) alloys in marine structures, using stress corrosion resistance as a criterion


2018 ◽  
Vol 54 (5) ◽  
pp. 866-875
Author(s):  
G. Srinivasa Rao ◽  
K. Srinivasa Rao ◽  
P. Srinivasa Rao ◽  
S. R. Koteswara Rao ◽  
G. Madhusudan Reddy

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2610 ◽  
Author(s):  
Marina Cabrini ◽  
Sara Bocchi ◽  
Gianluca D'Urso ◽  
Claudio Giardini ◽  
Sergio Lorenzi ◽  
...  

The paper is devoted to the study of stress corrosion cracking phenomena in friction stir welding AA-2024 T3 joints. Constant load (CL) cell and slow strain rate (SSR) tests were carried out in aerated NaCl 35 g/L solution. During the tests, open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were measured in the different zones of the welding. The results evidenced initial practical nobilty of the nugget lower compared to both heat-affected zone and the base metal. This effect can be mainly ascribed to the aluminum matrix depletion in copper, which precipitates in form of copper-rich second phases. In this zones, no stress corrosion cracking was noticed, but well-evident stress-enhanced intergranular corrosion occurred. This is due to the uneven distribution of platic deformation during the slow strain rate tests. Higher strain values are localized at the heat affected zone, where softening occurs. On the contrary, stress values at the nugget are not sufficient to favor both the initiation and propagation of stress corrosion cracks. In the range of processing parameter studied in this experimental work, the stress corrosion cracking susceptibility of the friction stir welding (FSW)-ed alloy is then similar to that of the base metal.


2015 ◽  
Vol 33 (6) ◽  
pp. 443-454 ◽  
Author(s):  
Timothy L. Burnett ◽  
N.J. Henry Holroyd ◽  
Geoffrey M. Scamans ◽  
Xiaorong Zhou ◽  
George E. Thompson ◽  
...  

AbstractStress corrosion cracks of all types are characterised by extensive crack branching, and this is frequently used as the key failure analysis characteristic to identify this type of cracking. For aluminium alloys, stress corrosion cracking (SCC) is almost exclusively an intergranular failure mechanism. For plate and extruded components, this had led to the development of test procedures using double cantilever beam and compact tension precracked specimens that rely on the pancake grain shape to constrain cracking, so that fracture mechanics can be applied to the analysis of stress intensity and crack velocity and the evolution of a characteristic performance curve. We have used X-ray computed tomography to examine in detail SCC in aluminium alloys in three dimensions for the first time. We have found that crack branching limits the stress intensity at the crack tip as the applied stress is shared amongst a number of cracks that are held together by uncracked ligaments. We propose that the plateau region observed in the v-K curve is an artefact due to crack branching, and at the crack tips of the many crack branches, cracking essentially occurs at constant K almost irrespective of the crack length. We have amplified the crack branching effect by examining a sample where the long axis of the pancake grains was inclined to the applied stressing direction. Our results have profound implications for the future use of precracked specimens for SCC susceptibility testing and the interpretation of results from these tests.


Sign in / Sign up

Export Citation Format

Share Document