Mechatronic Design of a Planar Parallel Robot Actuated by Pneumatic Artificial Muscles

2010 ◽  
Vol 166-167 ◽  
pp. 57-62
Author(s):  
Sorin Besoiu ◽  
Vistrian Măties ◽  
Donca Radu

The pneumatic actuation is widely used in robotics. The actuators based on pneumatic artificial muscles are unconventional actuation systems which use the shortening by increase of the volume property which generate an axial force. They have a very good force/volume ratio and some advantages compared with conventional pneumatic actuation. This paper presents the mechatronic design of a PRRRP Biglide planar parallel robot actuated by four artificial muscles in antagonist configuration. The control system is based on an 8-bit microcontroller based development board and the position and force control is made by means of pressure regulation using proportional pressure regulators. It was determined the workspace of PRRRP Biglide parallel robot for different strokes of actuators using discretisation method in Matlab environment.

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
David Bou Saba ◽  
Paolo Massioni ◽  
Eric Bideaux ◽  
Xavier Brun

Pneumatic artificial muscles (PAMs) are an interesting type of actuators as they provide high power-to-weight and power-to-volume ratio. However, their efficient use requires very accurate control methods taking into account their complex and nonlinear dynamics. This paper considers a two degrees-of-freedom platform whose attitude is determined by three pneumatic muscles controlled by servovalves. An overactuation is present as three muscles are controlled for only two degrees-of-freedom. The contribution of this work is twofold. First, whereas most of the literature approaches the control of systems of similar nature with sliding mode control, we show that the platform can be controlled with the flatness-based approach. This method is a nonlinear open-loop controller. In addition, this approach is model-based, and it can be applied thanks to the accurate models of the muscles, the platform and the servovalves, experimentally developed. In addition to the flatness-based controller, which is mainly a feedforward control, a proportional-integral (PI) controller is added in order to overcome the modeling errors and to improve the control robustness. Second, we solve the overactuation of the platform by an adequate choice for the range of the efforts applied by the muscles. In this paper, we recall the basics of this control technique and then show how it is applied to the proposed experimental platform. At the end of the paper, the proposed approach is compared to the most commonly used control method, and its effectiveness is shown by means of experimental results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yaxi Wang ◽  
Qingsong Xu

AbstractWrist rehabilitation is needed to help post-stroke and post-surgery patients recover from wrist fracture or injury. Traditional rehabilitation training is conducted by a therapist in a hospital, which hinders timely treatment due to the corresponding time and space constraints. This paper presents the design and implementation of a soft parallel robot for automated wrist rehabilitation. The presented wrist rehabilitation robot integrates the advantages of both soft robot and parallel robot structures. Unlike traditional rigid-body based rehabilitation robots, this soft parallel robot exhibits a compact structure, which is highly secure, adaptable, and flexible and thus a low-cost solution for personalized treatment. The proposed soft wrist-rehabilitation robot is driven by six evenly distributed linear actuators using pneumatic artificial muscles and one central linear electric motor. The introduced parallel-kinematic mechanism design enables the enhancement of the output stiffness of the soft robot for practical use. An electromyography sensor is adopted to provide feedback signals for evaluating the rehabilitation training process. A kinematic model of the designed robot is derived, and a prototype is fabricated for experimental testing. The results demonstrate that the developed soft rehabilitation robot can assist the wrist to realize all the required training motions, including abduction-adduction, flexion-extension, and supination-pronation. The compact and lightweight structure of this novel robot makes it convenient to use, and suitable rehabilitation training modes can be chosen for tailored rehabilitation at home or in a hospital.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142098603
Author(s):  
Daoxiong Gong ◽  
Mengyao Pei ◽  
Rui He ◽  
Jianjun Yu

Pneumatic artificial muscles (PAMs) are expected to play an important role in endowing the advanced robot with the compliant manipulation, which is very important for a robot to coexist and cooperate with humans. However, the strong nonlinear characteristics of PAMs hinder its wide application in robots, and therefore, advanced control algorithms are urgently needed for making the best use of the advantages and bypassing the disadvantages of PAMs. In this article, we propose a full-order sliding mode control extended state observer (fSMC-ESO) algorithm that combines the ESO and the fSMC for a robotic joint actuated by a pair of antagonistic PAMs. The fSMC is employed to eliminate the chattering and to guarantee the finite-time convergence, and the ESO is adopted to observe both the total disturbance and the states of the robot system, so that we can inhibit the disturbance and compensate the nonlinearity efficiently. Both simulations and physical experiments are conducted to validate the proposed method. We suggest that the proposed method can be applied to the robotic systems actuated by PAMs and remarkably improve the performance of the robot system.


2021 ◽  
Author(s):  
Jiang Zou ◽  
Miao Feng ◽  
Ningyuan Ding ◽  
Peinan Yan ◽  
Haipeng Xu ◽  
...  

Abstract Although the advances in artificial muscles enable creating soft robots with biological dexterity and self-adaption in unstructured environments, producing scalable artificial muscles with multiple-mode actuations is still elusive. Inspired by muscle-fiber arrays in muscular hydrostats, we present a class of versatile artificial muscles, called MAIPAMs (Muscle-fiber Array Inspired Pneumatic Artificial Muscles), capable of multiple-mode actuations (such as parallel elongation-bending-spiraling actuations, parallel 10 bending actuations, and cascaded elongation-bending-spiraling actuations). Our MAIPAMs mainly consist of active 3D elastomer-balloon arrays reinforced by a passive elastomer membrane, which is achieved through a planar design and one-step rolling fabrication approach. We introduce the prototypical designs of MAIPAMs and demonstrate their muscle-mimic structures and versatility, as well as their scalable ability to integrate flexible while un-stretchable layers for contraction and twisting actuations and compliant electrodes for self-sensing. We further demonstrate that this class of artificial muscles shows promising potentials for versatile robotic applications, such as carrying a camera for recording videos, gripping and manipulating objects, and climbing a pipe-line.


2016 ◽  
Vol 11 (5) ◽  
pp. 056014 ◽  
Author(s):  
Sylvie A DeLaHunt ◽  
Thomas E Pillsbury ◽  
Norman M Wereley

2013 ◽  
Vol 460 ◽  
pp. 1-12 ◽  
Author(s):  
Alexander Hošovský ◽  
Kamil Židek

Pneumatic artificial muscles belong to a category of nonconventional pneumatic actuators that are distinctive for their high power/weight ratio, simple construction and low price and maintenance costs. As such, pneumatic artificial muscles represent an alternative type of pneumatic actuator that could replace the traditional ones in certain applications. Due to their specific construction, PAM-based systems have nonlinear characteristics which make it more difficult to design a control system with good performance. In the paper, a gray-box model (basically analytical but with certain experimental parts) of the one degree-of-freedom PAM-based actuator is derived. This model interconnects the description of pneumatic and mechanical part of the system through a set of several nonlinear differential equations and its main purpose is the design of intelligent control system in simulation environment. The model is validated in both open-loop and closed-loop mode using the measurements on real plant and the results confirm that model performance is in good agreement with the performance of real actuator.


Sign in / Sign up

Export Citation Format

Share Document