force volume
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wencke Krings ◽  
Jordi Marcé-Nogué ◽  
Stanislav N. Gorb

AbstractThe radula, a chitinous membrane with embedded tooth rows, is the molluscan autapomorphy for feeding. The morphologies, arrangements and mechanical properties of teeth can vary between taxa, which is usually interpreted as adaptation to food. In previous studies, we proposed about trophic and other functional specialisations in taenioglossan radulae from species of African paludomid gastropods. These were based on the analysis of shape, material properties, force-resistance, and the mechanical behaviour of teeth, when interacting with an obstacle. The latter was previously simulated for one species (Spekia zonata) by the finite-element-analysis (FEA) and, for more species, observed in experiments. In the here presented work we test the previous hypotheses by applying the FEA on 3D modelled radulae, with incorporated material properties, from three additional paludomid species. These species forage either on algae attached to rocks (Lavigeria grandis), covering sand (Cleopatra johnstoni), or attached to plant surface and covering sand (Bridouxia grandidieriana). Since the analysed radulae vary greatly in their general size (e.g. width) and size of teeth between species, we additionally aimed at relating the simulated stress and strain distributions with the tooth sizes by altering the force/volume. For this purpose, we also included S. zonata again in the present study. Our FEA results show that smaller radulae are more affected by stress and strain than larger ones, when each tooth is loaded with the same force. However, the results are not fully in congruence with results from the previous breaking stress experiments, indicating that besides the parameter size, more mechanisms leading to reduced stress/strain must be present in radulae.


2021 ◽  
Vol 7 ◽  
Author(s):  
Sebastian Friedrich ◽  
Brunero Cappella

When compliant samples such as polymer films are scanned with an atomic force microscope (AFM) in contact mode, a periodic ripple pattern can be induced on the sample. In the present paper, friction and mechanical properties of such ripple structures on films of polystyrene (PS) and poly-n-(butyl methacrylate) (PnBMA) are investigated. Force volume measurements allow a quantitative analysis of the elastic moduli with nanometer resolution, showing a contrast in mechanical response between bundles and troughs. Additionally, analysis of the lateral cantilever deflection when scanning on pre-machined ripples shows a clear correlation between friction and the sample topography. Those results support the theory of crack propagation and the formation of voids as a mechanism responsible for the formation of ripples. This paper also shows the limits of the presented measuring methods for soft, compliant, and small structures. Special care must be taken to ensure that the analysis is not affected by artefacts.


ACS Omega ◽  
2021 ◽  
Author(s):  
Olajumoke H. Olubowale ◽  
Shanta Biswas ◽  
Golam Azom ◽  
Benjamin L. Prather ◽  
Samuel D. Owoso ◽  
...  

2021 ◽  
Author(s):  
Wencke Krings ◽  
Jordi Marcé-Nogué ◽  
Stanislav N. Gorb

Abstract The radula, a chitinous membrane with embedded tooth rows, is the molluscan autapomorphy for feeding. The morphologies, arrangements and mechanical properties of teeth can vary between taxa, which is usually interpreted as adaptation to food. In previous studies, we proposed about trophic and other functional specialisations in taenioglossan radulae from species of African paludomid gastropods. These were based on the analysis of shape, material properties, force-resistance, and the mechanical behaviour of teeth, when interacting with an obstacle, which was previously simulated for one species (Spekia) by the finite-element-analysis (FEA) and, for more species, observed in experiments. In the here presented work, we test the previous hypotheses by applying the FEA on 3D modelled radulae, with incorporated material properties, from three additional paludomid species. These species forage either on algae attached to rocks (Lavigeria), covering sand (Cleopatra), or attached to plant surface and covering sand (Bridouxia). Since the analysed radulae vary greatly in their size between species, we additionally aimed at relating the simulated stress and strain distributions with the tooth sizes by altering the force/volume. For this purpose, we also included Spekia again in the present study. Our FEA results show that smaller radulae are more affected by stress and strain than larger ones, when each tooth is loaded with the same force. However, the results are not fully in congruence with results from the previous breaking stress experiments, indicating that besides the parameter size, more mechanisms leading to reduced stress/strain must be present in radulae.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shuting Zhang ◽  
Yihui Weng ◽  
Chunhua Ma

AbstractElastomeric nanostructures are normally expected to fulfill an explicit mechanical role and therefore their mechanical properties are pivotal to affect material performance. Their versatile applications demand a thorough understanding of the mechanical properties. In particular, the time dependent mechanical response of low-density polyolefin (LDPE) has not been fully elucidated. Here, utilizing state-of-the-art PeakForce quantitative nanomechanical mapping jointly with force volume and fast force volume, the elastic moduli of LDPE samples were assessed in a time-dependent fashion. Specifically, the acquisition frequency was discretely changed four orders of magnitude from 0.1 up to 2 k Hz. Force data were fitted with a linearized DMT contact mechanics model considering surface adhesion force. Increased Young’s modulus was discovered with increasing acquisition frequency. It was measured 11.7 ± 5.2 MPa at 0.1 Hz and increased to 89.6 ± 17.3 MPa at 2 kHz. Moreover, creep compliance experiment showed that instantaneous elastic modulus E1, delayed elastic modulus E2, viscosity η, retardation time τ were 22.3 ± 3.5 MPa, 43.3 ± 4.8 MPa, 38.7 ± 5.6 MPa s and 0.89 ± 0.22 s, respectively. The multiparametric, multifunctional local probing of mechanical measurement along with exceptional high spatial resolution imaging open new opportunities for quantitative nanomechanical mapping of soft polymers, and can potentially be extended to biological systems.


Author(s):  
Maria-Gabriela Garcia ◽  
Maria Gloria Roman ◽  
Andrea Davila ◽  
Bernard J. Martin

Objective The goal of this study was to evaluate and compare lower-leg muscle fatigue, edema, and discomfort induced by the prolonged standing of security guards wearing regular socks and those wearing 15–20 or 20–30 mmHg compression stockings as intervention. Background Compression stockings are somewhat used by individuals standing all day at work. However, quantitative evidence showing their potential benefits for lower-leg health issues in healthy individuals during real working conditions is lacking. Method Forty male security employees participated in the study. All were randomly assigned to the control or one of the two intervention groups (I15–20 or I20–30). Lower-leg muscle twitch force, volume, and discomfort ratings were measured before and after their regular 12-hr standing work shift. Results Significant evidence of lower-leg long-lasting muscle fatigue, edema, and discomfort was observed after standing work for guards wearing regular socks. However, no significant changes were found for guards wearing either compression stockings. Conclusion In healthy individuals, compression stockings seem to attenuate efficiently the tested outcomes in the lower leg resulting from prolonged standing. Application Occupational activities requiring prolonged standing may benefit from 15–20 or 20–30 mmHg compression stockings. As similar benefits were observed for both levels of compression, the lower level may be sufficient.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1402
Author(s):  
Martí Checa ◽  
Ruben Millan-Solsona ◽  
Adrianna Glinkowska Mares ◽  
Silvia Pujals ◽  
Gabriel Gomila

Mapping the dielectric properties of cells with nanoscale spatial resolution can be an important tool in nanomedicine and nanotoxicity analysis, which can complement structural and mechanical nanoscale measurements. Recently we have shown that dielectric constant maps can be obtained on dried fixed cells in air environment by means of scanning dielectric force volume microscopy. Here, we demonstrate that such measurements can also be performed in the much more challenging case of fixed cells in liquid environment. Performing the measurements in liquid media contributes to preserve better the structure of the fixed cells, while also enabling accessing the local dielectric properties under fully hydrated conditions. The results shown in this work pave the way to address the nanoscale dielectric imaging of living cells, for which still further developments are required, as discussed here.


Small Methods ◽  
2021 ◽  
pp. 2100279
Author(s):  
Martí Checa ◽  
Ruben Millan‐Solsona ◽  
Adrianna Glinkowska Mares ◽  
Silvia Pujals ◽  
Gabriel Gomila

Sign in / Sign up

Export Citation Format

Share Document