Experimental Determination of Early Shrinkage of Alkali-Activated Slag

2019 ◽  
Vol 292 ◽  
pp. 114-119
Author(s):  
Martin Alexa ◽  
Dalibor Kocáb ◽  
Barbara Kucharczyková ◽  
Jan Kotrla

This paper deals with the relationship between chemical processes in the early stages of hydration of alkali-activated slag, volume changes and the development of the microstructure of this material. Two test pastes were produced for the purpose of the experiment - one with and the other without an organic admixture (isopropyl alcohol). The pastes were used to monitor autogenous shrinkage by measuring volume changes and at the same time the changes in the material during setting and early hardening using a modern ultrasonic instrument Vikasonic. The output of the described experiment is a detailed evaluation of the difference in the behaviour of the used alkali-activated paste with and without the addition of an organic admixture.

2018 ◽  
Vol 761 ◽  
pp. 7-10 ◽  
Author(s):  
Barbara Kucharczyková ◽  
Vlastimil Bílek Jr. ◽  
Dalibor Kocáb ◽  
Ondřej Karel

The paper deals with the experimental determination of shrinkage development of the composites based on the alkali-activated slag (AAS). The main aim of the experimental investigation was to verify the effect of the addition of shrinkage-reducing admixture (SRA) on the overall process of shrinkage properties during AAS composites ageing.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3499
Author(s):  
Bin Chen ◽  
Jun Wang ◽  
Jinyou Zhao

The shrinkage of alkali-activated slag (AAS) is obviously higher than ordinary Portland cement, which limited its application in engineering. In this study, the effects of NaAlO2 in mitigating drying shrinkage and autogenous shrinkage of AAS were studied. To further understand the shrinkage mechanism, the hydration products and microstructures were studied by X-ray diffraction, scanning electron microscopy and nitrogen adsorption approaches. As the partial substitution rate of NaAlO2 for Na2SiO3 increased, the drying shrinkage and autogenous shrinkage reduced significantly. The addition of NaAlO2 could slow down the rate of hydration reaction and reduce the porosity, change the pore diameter and the composition of generated paste and cause more hydrotalcite and tetranatrolite generated—which contributed to reduced shrinkage. Additionally, raising the Na2O content rate caused obvious differences in drying shrinkage and autogenous shrinkage. As the Na2O content elevated, the drying shrinkage decreased and autogenous shrinkage increased. A high Na2O content would cause complete hydration reactions and provoke high autogenous shrinkage. However, incomplete hydration reactions left more water in the paste, and the evaporated water dramatically influenced drying shrinkage. The results indicate that addition of NaAlO2 could greatly mitigate the drying shrinkage and autogenous shrinkage of AAS.


2020 ◽  
Vol 10 (17) ◽  
pp. 6092
Author(s):  
Zhenming Li ◽  
Xingliang Yao ◽  
Yun Chen ◽  
Tianshi Lu ◽  
Guang Ye

Alkali-activated slag and fly ash (AASF) materials are emerging as promising alternatives to conventional Portland cement. Despite the superior mechanical properties of AASF materials, they are known to show large autogenous shrinkage, which hinders the wide application of these eco-friendly materials in infrastructure. To mitigate the autogenous shrinkage of AASF, two innovative autogenous-shrinkage-mitigating admixtures, superabsorbent polymers (SAPs) and metakaolin (MK), are applied in this study. The results show that the incorporation of SAPs and MK significantly mitigates autogenous shrinkage and cracking potential of AASF paste and concrete. Moreover, the AASF concrete with SAPs and MK shows enhanced workability and tensile strength-to-compressive strength ratios. These results indicate that SAPs and MK are promising admixtures to make AASF concrete a high-performance alternative to Portland cement concrete in structural engineering.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2812 ◽  
Author(s):  
Hyeong-Ki Kim ◽  
Keum-Il Song ◽  
Jin-Kyu Song ◽  
Jeong Gook Jang

The effect of carbonation on the abrasion resistance of alkali-activated slag (AAS) was investigated. Various activator sets were selected for synthesizing AAS specimens, and the compressive strength was measured before and after carbonation. The abrasion resistance of the specimens was measured in accordance with the ASTM C944 test method. The relationship between the mass loss caused by abrasion and compressive strength was analyzed to understand the effect of matrix strength on abrasion resistance. Test results showed that the decrease in compressive strength of AAS specimens by carbonation reduced their abrasion resistance. In addition, the abrasion resistance of AAS before and after carbonation was sensitively influenced by activator type. It can be concluded that additional caution is required when using AAS where abrasion may have occurred.


Sign in / Sign up

Export Citation Format

Share Document