Hardening Cement Conglomerates by Mining Industries Waste

2021 ◽  
Vol 316 ◽  
pp. 1061-1066
Author(s):  
Lilia V. Ilina ◽  
Irina N. Mukhina ◽  
Mariya M. Semenova

About 3.5 billion tons of mining waste is generated annually in Russia. The task of their utilization is urgent in connection with the accumulation of large-tonnage waste of simultaneously mined rocks, enrichment waste and crushing screenings. The problem can be solved by using these wastes as mineral additives to artificial cement-based conglomerates. According to the study results it was found, that the compressive strength of hardened cement paste increased during all hardening periods, when finely dispersed mining wastes were introduced. In the early stages of hardening, limestone had a predominant effect. Introduction of diopside led to the greatest hardening together with the hardening period increase. Linear and nonlinear mathematical models, describing the dependence of cement strength on the type and amount of mineral additives, were constructed. The highest strength values of hardened cement paste, both after hardening under normal conditions for 28 days, and after heat and moisture treatment could be achieved with 7% dispersed diopside. At the same time, the hardening effect (increase in the strength of cement by 35–40%) was retained when 1/3 of the diopside in the complex additive was replaced by dispersed limestone. An increase in the content of limestone in the complex additive composition over 1/3 was impractical.

2018 ◽  
Vol 196 ◽  
pp. 04018 ◽  
Author(s):  
Grigory Nesvetaev ◽  
Yulia Koryanova ◽  
Tatiana Zhilnikova

A model describing the variation in autogenous shrinkage and drying shrinkage of portland cement concrete, depending on the volume of aggregates and the shrinkage of hardened cement paste, is presented. The equation to calculate shrinkage of concrete as a function of the volume of aggregates and shrinkage of a hardened cement paste was proposed. Formulas are proposed that describe the change in the shrinkage of hardened cement paste as a function of water/cement. The results of studies of the effect of superplasticizers and mineral additives on the autogenous shrinkage and the drying shrinkage of hardened cement paste are presented. Concretes made with superplasticizer and mineral additive may have the potential lower the value of drying shrinkage. The shrinkage value can be lowered from 30% till 70%. Concretes containing superplasticizers and mineral additives can potentially have the autogenous shrinkage reduced to 75%, or increased to 180%.


2017 ◽  
Vol 265 ◽  
pp. 109-113 ◽  
Author(s):  
G.V. Nesvetaev ◽  
I.V. Korchagin ◽  
Y.Y. Lopatina

The relationship between the creep factor of concrete and hardened cement paste and the E-modulus of aggregate and evaluation of the effects of some modifiers on the creep factor of the hardened cement paste was determined. The influence of the SP on the creep factor of hardened cement paste is ambiguous: SP may increase, decrease, or not change the creep factor. The possible deviation of creep factor of hardened cement paste with the SP in certain cases can be up to 4 times. The average statistical increase in the creep factor of hardened cement paste may be 7 to 35%. The creep factor of regular concrete is equal 0.43 - 0.9 value of the creep factor of hardened cement paste. Superplasticizers may increase the creep of concrete up to 30% and in some cases - up to 3 times. Silica fume, metakaolin, white ash, including when used with the superplasticizers, may reduce the creep of concrete from 15 to 50%. An equation was suggested to calculate the E-modulus of concrete with the volume of hardened cement paste of 0.27 - 0.35 as a function of E-modulus of hardened cement paste and E-modulus of the aggregates.


Author(s):  
Yidong Gan ◽  
Hongzhi Zhang ◽  
Minfei Liang ◽  
Erik Schlangen ◽  
Klaas van Breugel ◽  
...  

1999 ◽  
Vol 32 (9) ◽  
pp. 627-634 ◽  
Author(s):  
R. E. Beddoe ◽  
R. Lippok

2021 ◽  
Vol 149 ◽  
pp. 106562
Author(s):  
Yidong Gan ◽  
Matthieu Vandamme ◽  
Yu Chen ◽  
Erik Schlangen ◽  
Klaas van Breugel ◽  
...  

2013 ◽  
Vol 5 (5) ◽  
pp. 530-535
Author(s):  
Lukas Venčkauskas ◽  
Mindaugas Daukšys

The conducted research has established a complex influenceand the impact of separate chemical admixtures of differentpurpose on the parameters of the porosity of hardened cementpaste such as open and closed porosity, the average size of poresand the rates of pore inequality. According to the parametersof the porosity of hardened cement paste, on the basis of A. E.Sheikin’s methodology, the number of freezing-thawing cycleswas predicted. This research used plasticizing, viscosity modifyingand antifoaming admixtures. It has been found that, when theamount of plasticizing admixture in cement paste (W/C–0.45) isconstant and makes 1.1% of the cement mass, and the amountof viscosity modifying and antifoaming the admixture increasesfrom 0.1 to 0.6% and from 0.05 to 0.3% respectively, the openporosity of hardened cement paste varies between 30.21% and31.06%, while closed porosity varies between 5.39% and 6.22%.When the amount of the plasticizing admixture in cement paste(W/C–0.45) exceeds 1.1% of the cement mass, the open porosityof hardened cement paste increases by 1.4 times and closedporosity decreases by 2.5 times. While adding 0.1% of the viscositymodifying admixture to cement paste, the open porosityof hardened cement paste is increased by 1.5 times and closedporosity decreases by 2.4 times. The amount of 0.05% of thecement mass of the antifoaming admixture results in the increasedopen porosity of hardened cement paste by 1.5 times and reducedclosed porosity by 3.5 times. Santrauka Tyrimo metu nustatyta kompleksinė bei atskirų skirtingos paskirties cheminių priedų įtaka cementinio akmens poringumo rodikliams – atvirajam ir uždarajam poringumui, vidutinio porų dydžio ir porų vienodumo rodikliams. Tyrimuose naudoti cheminiai priedai: plastifikuojantis, klampą modifikuojantis ir mišinyje susiformavusias oro poras suardantis priedas. Nustatyta, kad cemento tešloje (V/C – 0,45) esant pastoviam plastifikuojančio priedo kiekiui – 1,0 % cemento masės, klampą modifikuojančio priedo kiekiui kintant nuo 0,1 iki 0,6 %, o mišinyje susiformavusias oro poras suardančio priedo kiekiui kintant nuo 0,05 iki 0,3 %, cementinio akmens atvirasis poringumas svyruoja nuo 30,21 iki 31,06 %, o uždarasis – nuo 5,39 iki 6,22 %. Cemento tešloje viršijus plastifikuojančio priedo 1,1 % cemento masės, cementinio akmens atvirasis poringumas padidėja apie 1,4 karto, o uždarasis poringumas sumažėja apie 2,5 karto. Pridėjus į tešlą 0,1 % cemento masės klampą modifikuojančio priedo, cementinio akmens atvirasis poringumas padidėja apie 1,5 karto, uždarasis poringumas sumažėja apie 2,4 karto. Oro poras suardančio priedo kiekis 0,05 % cemento masės cementinio akmens atvirąjį poringumą padidina apie 1,5 karto, uždarąjį poringumą sumažina apie 3,5 karto.


Sign in / Sign up

Export Citation Format

Share Document