Scanning Tunneling Microscopy Observation of WSe2 Surface

2021 ◽  
Vol 323 ◽  
pp. 140-145
Author(s):  
Munkhsaikhan Gonchigsuren ◽  
Otgonbayar Dugerjav ◽  
Odontuya Bayarsaikhan ◽  
Buyanjargal Ragchaa ◽  
Naranchimeg Dagviikhorol

The surface structure of the WSe2 were studied using scanning tunneling microscopy. Exfoliation method in an ultra-high-vacuum chamber method is used to obtain a clean surface of WSe2 samples with atomically smooth terraces and multi-layer steps. Atomic-resolution images revealed two types of atomic defects of surface or near surface. These defects have been identified as the defects in the tungsten atom layer just below the topmost selenium layer.

1996 ◽  
Vol 448 ◽  
Author(s):  
Jun-Ya Ishizaki ◽  
Yasuhiko Ishizaki ◽  
Takashi Fukui

AbstractWe observe the atomic structures at the multilayer step region on MOVPE-grown GaAs (001) vicinal surface using ultra high vacuum scanning tunneling microscopy (UHV-STM), and clarify that (4×2) or (4×3) like reconstruction units are dominant. Oxide free AlAs surfaces grown on GaAs vicinal surface are also successfully observed by UHV-STM. The reconstruction units at the multilayer step region on AlAs surface have the same units on GaAs vicinal surface. GaAs surface has the lack of dimmer rows on the terrace region just below the multilayer step region, while AlAs surface has dimmer rows even on the terrace just below the multilayer step region. GaAs layer growth leads tothe step bunching phenomenon and AlAs surface leads to the step debunching phenomenon.


2001 ◽  
Vol 705 ◽  
Author(s):  
Lequn Liu ◽  
Jixin Yu ◽  
Joseph W. Lyding

AbstractThe electrical properties of single dangling bonds on the Si(100)2×1:H surface are investigated by ultra high vacuum scanning tunneling microscopy. On the N-type Si(100)2×1:H surface, single dangling bonds created by feedback controlled lithography and natural dangling bonds have a fixed negative charge. On the other hand, they are observed as neutral on the P-type Si(100)2×1:H surface. Current image tunneling spectroscopy is used to characterize both types of dangling bonds. The dangling bonds with fixed negative charge display a dramatic voltage dependence with Friedel oscillations observed in the empty state images. The neutral dangling bonds appear as protrusions in both the empty and filled state images.


2004 ◽  
Vol 838 ◽  
Author(s):  
Jixin Yu ◽  
Lequn Liu ◽  
Joseph W. Lyding

ABSTRACTThe Si/SiO2 interface roughness has received tremendous interest due to its relation to channel mobility degradation and dielectric reliability. We have used ultra-high vacuum scanning tunneling microscopy to directly examine the Si/SiO2 interface and study the roughening effect caused by chemical etching. The rms-roughness extracted quantitatively from the STM topography was found to be doubled from 0.111nm to 0.232nm by the normal NH4OH/H2O2 treatment, and further increased to 0.285nm for additional etching steps. It was also found that there were no regular single steps on the SiO2/Si(100) interface.


1997 ◽  
Vol 474 ◽  
Author(s):  
Markus Kuhn ◽  
J. F. Anderson ◽  
Jeremy Lehman ◽  
Talib Mahmoud ◽  
Ulrike Diebold

ABSTRACTThe interaction of molecular oxygen, at room temperature, with a reduced TiO2(110) surface has been studied in situ by scanning tunneling microscopy (STM). Oxygen vacancies (point defects) were created on a clean TiO2(110) surface by annealing in ultra-high vacuum and successfully imaged on the atomic scale. These point defect sites were stable under ultrahigh vacuum conditions. During exposure to molecular oxygen, new point defects appear at different locations on the surface although their overall number is reduced. A mechanism for this dynamic healing process is proposed.


Author(s):  
Haifeng Feng ◽  
Xun Xu ◽  
Yi Du ◽  
Shi Xue Dou

Abstract Scanning tunneling microscopy (STM) has gained increasing attention in the field of electrocatalysis due to its ability to reveal electrocatalyst surface structures down to the atomic level in either ultra-high-vacuum (UHV) or harsh electrochemical conditions. The detailed knowledge of surface structures, surface electronic structures, surface active sites as well as the interaction between surface adsorbates and electrocatalysts is highly beneficial in the study of electrocatalytic mechanisms and for the rational design of electrocatalysts. Based on this, this review will discuss the application of STM in the characterization of electrocatalyst surfaces and the investigation of electrochemical interfaces between electrocatalyst surfaces and reactants. Based on different operating conditions, UHV-STM and STM in electrochemical environments (EC-STM) are discussed separately. This review will also present emerging techniques including high-speed EC-STM, scanning noise microscopy and tip-enhanced Raman spectroscopy. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document