High-Resolution Imaging Sonar and Video Technologies for Detection and Classification of Underwater Munitions

2011 ◽  
Vol 45 (6) ◽  
pp. 62-74 ◽  
Author(s):  
Pierre-Philippe J. Beaujean ◽  
Lisa N. Brisson ◽  
Shahriar Negahdaripour

AbstractThe detection of and response to underwater munitions will undoubtedly require the appropriate combinations of fully integrated sensors and imaging systems and platforms, as well as navigation and positioning technologies, to handle the variability in bottom conditions, water clarity and depth, size and type of munitions of interest, whether they are buried or proud. Where visibility allows, practically no sensing modality matches the details and information content from optical imaging systems for target localization, discrimination and identification. The significant disadvantage of optical systems for underwater applications is the range limitation. Sonar imaging systems are of limited resolution but do not have such a severe range limitation, as acoustic energy propagates well through turbid waters.In this study, we have explored two aspects of the munitions detection and classification process: (1) high-resolution mapping of an environment using a high-frequency sonar system to determine footprints of areas with munitions present and target localization in a wide-area survey and to perform detailed surveys for individual detected items during a re-acquisition process and (2) Multiple-Aspect Fixed-Range Template Matching (MAFR-TM) for detection and classification of the potential target.The MAFR-TM approach was tested using (1) a singular target scene collected in a test tank, (2) a cluttered scene acquired in the same test tank, and (3) a cluttered scene obtained in a realistic field environment (a marina). The munitions-like targets were cylinders made of steel or aluminum. The clutter was a collection of PVC tubes. Biological growth surrounded the target and artificial clutter in the marina. The experimental results indicate that the detection algorithm performs fairly well with the tank data (100% of the targets are detected) and cluttered tank data (94.44%). The classification between metals and plastics, proper orientation and target localization is also of good quality: 94.4% of the detected targets are properly classified as metal alloy if no clutter is present versus 82.35% in the presence of clutter. The algorithm performance in the marina is reasonably good, even though the overall performance drops: 61.11% of the targets are detected, and 68.18% of the detected targets are properly classified as metal alloy.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 208
Author(s):  
Javier Brugés Martelo ◽  
Jan Lundgren ◽  
Mattias Andersson

The manufacturing of high-quality extruded low-density polyethylene (PE) paperboard intended for the food packaging industry relies on manual, intrusive, and destructive off-line inspection by the process operators to assess the overall quality and functionality of the product. Defects such as cracks, pinholes, and local thickness variations in the coating can occur at any location in the reel, affecting the sealable property of the product. To detect these defects locally, imaging systems must discriminate between the substrate and the coating. We propose an active full-Stokes imaging polarimetry for the classification of the PE-coated paperboard and its substrate (before applying the PE coating) from industrially manufactured samples. The optical system is based on vertically polarized illumination and a novel full-Stokes imaging polarimetry camera system. From the various parameters obtained by polarimetry measurements, we propose implementing feature selection based on the distance correlation statistical method and, subsequently, the implementation of a support vector machine algorithm that uses a nonlinear Gaussian kernel function. Our implementation achieves 99.74% classification accuracy. An imaging polarimetry system with high spatial resolution and pixel-wise metrological characteristics to provide polarization information, capable of material classification, can be used for in-process control of manufacturing coated paperboard.


2013 ◽  
Vol 339 ◽  
pp. 728-731 ◽  
Author(s):  
Cun Lei Li ◽  
Lei Qin ◽  
Xue Li ◽  
Xi Long Zhang

With the instruction of the high resolution sequence stratigraphy and sedimentology theory, and the comprehensive application of 11 wells core, more than 800 mud logging and log data, high resolution sequence stratigraphic characteristics research in the XII Group of the Member III of Qing Shankou Formation in the Qianan oilfield has been finished. The results show that the study area can be divided into one middle-term base level cycle and five short-term base level cycles. The only sequence structure of middle term cycle is (B type) and the short term cycle mainly consists of B types meanwhile there are small mounts of upward deepening structures (A type) and symmetric structures (C type). Based on the classification of base-level cycles, fine stratigraphic correlation is conducted by using isochronous cycle correlations. In addition, 15 high resolution sequence stratigraphic frameworks are established which unify the study area and provide the solid geological basis for the sandstone distribution, the identification of mainly oil-bearing sand bodies and potential oil reservoirs.


2015 ◽  
Vol 7 (12) ◽  
pp. 16422-16440 ◽  
Author(s):  
Qian Zhang ◽  
Rongjun Qin ◽  
Xin Huang ◽  
Yong Fang ◽  
Liang Liu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document