Quarter Circular Breakwater: Prediction of Transmission Using Multiple Regression and Artificial Neural Network

2014 ◽  
Vol 48 (1) ◽  
pp. 92-98 ◽  
Author(s):  
Rushil Goyal ◽  
Kriti Singh ◽  
Arkal Vittal Hegde

AbstractThe physical model study of coastal structures is a nonlinear process influenced by innumerable parameters. As a result of a lack of definite systems, intricacies, and high costs involved in the physical models, we need a simple mathematical tool to predict wave transmission through quarter circular breakwater (QBW). QBW is a state-of-the-art breakwater essentially based on the exploitation of the concepts of semicircular breakwater. This paper discusses the use of soft computing tools such as MATLAB-based multiple regression (MR) and artificial neural network (ANN) to predict the wave transmission coefficient of QBW. To assess the accuracy of the proposed model and its ability to forecast, correlation coefficient and mean squared error are availed. On comparing the results obtained from MR and ANN, it is concluded that ANN gives more accurate results and can be used as a powerful tool for the modeling of hydrodynamic breakwater transmission through QBW. It serves as a viable alternative to the conventional physical model to simulate the hydrodynamic transmission performance of QBW.

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
S. Karthiyaini ◽  
K. Senthamaraikannan ◽  
J. Priyadarshini ◽  
Kamal Gupta ◽  
M. Shanmugasundaram

The present study is to compare the multiple regression analysis (MRA) model and artificial neural network (ANN) model designed to predict the mechanical strength of fiber-reinforced concrete on 28 days. The model uses the data from early literatures; the data consist of tensile strength of fiber, percentage of fiber, water/cement ratio, cross-sectional area of test specimen, Young’s modulus of fiber, and mechanical strength of control specimen, and these were used as the input parameters; the respective strength attained was used as the target parameter. The models are created and are used to predict compressive, split tensile, and flexural strength of fiber admixed concrete. These models are evaluated through the statistical test such as coefficient of determination (R2) and root mean squared error (RMSE). The results show that these parameters produce a valid model through both MRA and ANN, and this model gives more precise prediction for the fiber admixed concrete.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3294
Author(s):  
Carla Delmarre ◽  
Marie-Anne Resmond ◽  
Frédéric Kuznik ◽  
Christian Obrecht ◽  
Bao Chen ◽  
...  

Sorption thermal heat storage is a promising solution to improve the development of renewable energies and to promote a rational use of energy both for industry and households. These systems store thermal energy through physico-chemical sorption/desorption reactions that are also termed hydration/dehydration. Their introduction to the market requires to assess their energy performances, usually analysed by numerical simulation of the overall system. To address this, physical models are commonly developed and used. However, simulation based on such models are time-consuming which does not allow their use for yearly simulations. Artificial neural network (ANN)-based models, which are known for their computational efficiency, may overcome this issue. Therefore, the main objective of this study is to investigate the use of an ANN model to simulate a sorption heat storage system, instead of using a physical model. The neural network is trained using experimental results in order to evaluate this approach on actual systems. By using a recurrent neural network (RNN) and the Deep Learning Toolbox in MATLAB, a good accuracy is reached, and the predicted results are close to the experimental results. The root mean squared error for the prediction of the temperature difference during the thermal energy storage process is less than 3K for both hydration and dehydration, the maximal temperature difference being, respectively, about 90K and 40K.


2021 ◽  
Author(s):  
Sascha Flaig ◽  
Timothy Praditia ◽  
Alexander Kissinger ◽  
Ulrich Lang ◽  
Sergey Oladyshkin ◽  
...  

<p>In order to prevent possible negative impacts of water abstraction in an ecologically sensitive moor south of Munich (Germany), a “predictive control” scheme is in place. We design an artificial neural network (ANN) to provide predictions of moor water levels and to separate hydrological from anthropogenic effects. As the moor is a dynamic system, we adopt the „Long short-term memory“ architecture.</p><p>To find the best LSTM setup, we train, test and compare LSTMs with two different structures: (1) the non-recurrent one-to-one structure, where the series of inputs are accumulated and fed into the LSTM; and (2) the recurrent many-to-many structure, where inputs gradually enter the LSTM (including LSTM forecasts from previous forecast time steps). The outputs of our LSTMs then feed into a readout layer that converts the hidden states into water level predictions. We hypothesize that the recurrent structure is the better structure because it better resembles the typical structure of differential equations for dynamic systems, as they would usually be used for hydro(geo)logical systems. We evaluate the comparison with the mean squared error as test metric, and conclude that the recurrent many-to-many LSTM performs better for the analyzed complex situations. It also produces plausible predictions with reasonable accuracy for seven days prediction horizon.</p><p>Furthermore, we analyze the impact of preprocessing meteorological data to evapotranspiration data using typical ETA models. Inserting knowledge into the LSTM in the form of ETA models (rather than implicitly having the LSTM learn the ETA relations) leads to superior prediction results. This finding aligns well with current ideas on physically-inspired machine learning.</p><p>As an additional validation step, we investigate whether our ANN is able to correctly identify both anthropogenic and natural influences and their interaction. To this end, we investigate two comparable pumping events under different meteorological conditions. Results indicate that all individual and combined influences of input parameters on water levels can be represented well. The neural networks recognize correctly that the predominant precipitation and lower evapotranspiration during one pumping event leads to a lower decrease of the hydrograph.</p><p>To further demonstrate the capability of the trained neural network, scenarios of pumping events are created and simulated.</p><p>In conclusion, we show that more robust and accurate predictions of moor water levels can be obtained if available physical knowledge of the modeled system is used to design and train the neural network. The artificial neural network can be a useful instrument to assess the impact of water abstraction by quantifying the anthropogenic influence.</p>


2018 ◽  
Vol 7 (2) ◽  
pp. 1
Author(s):  
Paulo Marcelo Tasinaffo ◽  
Gildárcio Sousa Gonçalves ◽  
Adilson Marques da Cunha ◽  
Luiz Alberto Vieira Dias

This paper proposes to develop a model-based Monte Carlo method for computationally determining the best mean squared error of training for an artificial neural network with feedforward architecture. It is applied for a particular non-linear classification problem of input/output patterns in a computational environment with abundant data. The Monte Carlo method allows computationally checking that balanced data are much better than non-balanced ones for an artificial neural network to learn by means of supervised learning. The major contribution of this investigation is that, the proposed model can be tested by analogy, considering also the fraud detection problem in credit cards, where the amount of training patterns used are high.


2018 ◽  
Vol 1 (1) ◽  
pp. 197-204
Author(s):  
Tomasz Cepowski

Abstract The article presents the use of multiple regression method to identify added wave resistance. Added wave resistance was expressed in the form of a four-state nominal function of: “thrust”, “zero”, “minor” and “major” resistance values. Three regression models were developed for this purpose: a regression model with linear variables, nonlinear variables and a large number of nonlinear variables. The nonlinear models were developed using the author's algorithm based on heuristic techniques. The three models were compared with a model based on an artificial neural network. This study shows that non-linear equations developed through a multiple linear regression method using the author’s algorithm are relatively accurate, and in some respects, are more effective than artificial neural networks.


2020 ◽  
Vol 6 (3) ◽  
pp. 1467-1475 ◽  
Author(s):  
Seyedeh Reyhaneh Shams ◽  
Ali Jahani ◽  
Mazaher Moeinaddini ◽  
Nematollah Khorasani

Author(s):  
Abdullahi Abubakar Masud ◽  
Firdaus Muhammad-Sukki ◽  
Ricardo Albarracin ◽  
Jorge Alfredo Ardila-Rev ◽  
Siti Hawa Abu-Bakar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document