scholarly journals Haplotype diversity analysis of bacterial leaf blight resistance gene Xa21 in rice

2018 ◽  
Vol 30 (1) ◽  
pp. 56 ◽  
Author(s):  
N. H. L. D. L. D. Nanayakkara ◽  
V. Herath ◽  
D. V. Jayatilake
2021 ◽  
Vol 22 (10) ◽  
Author(s):  
SITI YURIYAH ◽  
DEDY DARNAEDI ◽  
TATANG MITRA SETIA ◽  
GUT WINDARSIH ◽  
Dwinita Wikan Utami

Abstract. Yuriyah S, Darnaedi D, Setia TM, Windarsih G, Utami DW. 2021. Phenotype and genotype variability of interspecific rice lines related to bacterial leaf blight resistance (Xanthomonas oryzae pv. oryzae) character. Biodiversitas 22: 4123-4130. Wild rice species are the source of the gene pool for rice genetic diversity. The cross-species crosses (interspecific crosses) play an important role in breeding, namely in terms of expanding the diversity of desirable characters, such as disease resistance and improvement in yield potential. Currently, the genes from wild rice species have been successfully introgressed into cultivated rice so that they can overcome the rice production constraints, including the introgression of genes for the bacterial leaf blight (BLB) resistance. The purpose of this study was to analyze the variability of phenotype and genotype performance of lines derived from wild rice species for the character of resistance to BLB disease. A total of 33 selected backcross lines derived from wild rice species of O. rufipogon and O. glaberrima as the donor parents and 2 control varieties (resistant and susceptible to BLB disease), were used in this study. The evaluation of phenotype and genotype of resistance characters to BLB disease was carried out during a vegetative phase of the plant. The resistance evaluation was carried out in a greenhouse, while the genotype performance was analyzed using 4 STS markers linked to Xa4, Xa7, and Xa13 genes. The result of the phenotype evaluation showed that there were variations among the resistance of the tested lines. Three lines derived from a Situ Bagendit/Oryza rufipogon cross were resistant to all BLB races used in the testing. Those three lines indicated to have the allele of the Xa7 resistance gene based on the genotype performance which grouped with the Code variety that had the Xa7 resistance gene.


2012 ◽  
Vol 62 (4) ◽  
pp. 334-339 ◽  
Author(s):  
Takashi Endo ◽  
Masayuki Yamaguchi ◽  
Ryota Kaji ◽  
Koji Nakagomi ◽  
Tomomori Kataoka ◽  
...  

2018 ◽  
Vol 31 (1) ◽  
pp. 51
Author(s):  
Bhupendra Singh Panwar ◽  
Ruchi Trivedi ◽  
Rallapalli Ravikiran ◽  
Chet Ram ◽  
Subhash Narayanan

2020 ◽  
Vol 20 (2) ◽  
pp. 43
Author(s):  
Nafisah Nafisah ◽  
Celvia Roza ◽  
Nani Yunani ◽  
Aris Hairmansis ◽  
Tita Rostiati ◽  
...  

<p class="abstrakinggris">Hundred of high yielding and bacterial leaf blight (<em>Xanthomonas oryzae</em> pv. <em>oryzae, Xoo</em>) resistant rice varieties released since the 1960s are important sources of genetic materials for exploring superior genotypes. The study aimed to evaluate the genetic resistance of 177 rice varieties to <em>Xoo</em> and their agronomic traits. The evaluations were conducted at the Indonesian Center for Rice Research Experimental Station during the wet season (December 2015-March 2016). The bacterial leaf blight resistance was evaluated for <em>Xoo</em> pathotypes III, IV, and VIII using the clipping method. The genetic variation among genotypes was categorized as low (0–10%), medium (10–20%), and high (&gt;20%), whereas the heritability was categorized as low (0-30%), medium (30-60%), and high (&gt;60%). The variability of resistance to <em>Xoo</em> pathotypes, grain yield, and spikelet fertility was low, while the variability of plant height, productive tiller number, filled grain, and total spikelet was medium, and the variability of unfilled grain number was high. The 29 varieties  were categorized as superior based on their agronomic traits or resistance to <em>Xoo</em> pathotypes. In conclusion, Batutegi and Fatmawati were superior in the total spikelet number, while Rojolele and Inpari 2 were supreme in the thousand-grain weight. Dodokan had a very short maturity, and Inpari 24, Conde, Kalimas, Angke, Inpari 17, and Inpara 8 had the highest resistance to <em>Xoo</em> pathotypes. The study implies that the identified rice superior genotypes could be used as genetic materials to design cross combinations for higher yield potential and BLB resistance varietal improvement.</p>


Sign in / Sign up

Export Citation Format

Share Document