FOOD SEEKING AND SURVIVAL IN PREDACEOUS COCCINELLID LARVAE

1969 ◽  
Vol 101 (11) ◽  
pp. 1218-1222 ◽  
Author(s):  
M. I. Boldyrev ◽  
W. H. A. Wilde

AbstractSurvival of Adalia bipunctata (L.) emerging from eggs laid some distance from prey locations, depended on the ability or the larvae to reach a prey location on a host plant. Distances between egg clusters and prey locations, when less than 63 cm in laboratory cages, had little effect on larval survival. Pathways used by a larva to prey was more important than distance. Larvae that had access to prey via pathways, reached prey as distant as 63 cm from eclosion sites.Cannibalistic predation by these larvae on eggs increases their survival chances when prey are scarce.

Behaviour ◽  
2021 ◽  
pp. 1-21
Author(s):  
Rosalind K. Humphreys ◽  
Graeme D. Ruxton ◽  
Alison J. Karley

Abstract For herbivorous insects, dropping from the host plant is a commonly-observed antipredator defence. The use of dropping compared to other behaviours and its timing in relation to contact with a predator was explored in both pea aphids (Acyrthosiphon pisum) and potato aphids (Macrosiphum euphorbiae). Pea aphids dropped more frequently in response to ladybird adults (Adalia bipunctata) than lacewing larvae (Chrysoperla carnea). Potato aphids mainly walked away or backed-up in response to both predator types; but they dropped more frequently relative to other non-walking defences when faced with ladybird adults. Contact with a predator was an important influencer of dropping for both species, and most drops occurred from adjacent to the predator. Dropping appears to be a defence adaptively deployed only when the risk of imminent predation is high; factors that increase dropping likelihood include presence of faster-foraging predators such as adult ladybirds, predator proximity, and contact between aphid and predator.


1999 ◽  
Vol 131 (6) ◽  
pp. 801-811 ◽  
Author(s):  
S.E. Blatt ◽  
A.M. Schindel ◽  
R. Harmsen

AbstractThe suitability of three potential host plants, Solidago canadensis L. var. canadensis (Asteraceae), Solidago graminifolia (L.) Salisb., and Aster lateriflorus L. (Asteraceae), for the goldenrod beetle, Trirhabda virgata LeConte was determined by measuring several fitness components during the T. virgata life cycle. Neonate larvae were collected from S. canadensis plants and transplanted onto S. canadensis, S. graminifolia, and A. lateriflorus and maintained in field enclosures until the last instar was reached. Once brought into the laboratory, larvae were fed their assigned host plant until pupation. Following emergence, adults were weighed and separated into mating pairs to record oviposition and longevity. Eggs were kept in the laboratory until the following spring, when first instar larvae were taken into the field and re-established on their assigned host, and the experiment was repeated for 2 years. Larval survival and rate of development was not affected by the host plant. Mean weight of adults at emergence was greater on S. canadensis than on either S. graminifolia or A. lateriflorus. Two components of adult fitness, postmating longevity and realized fecundity, were measured. Longevity of adult female T. virgata was not affected by the host plant. Fecundity of T. virgata reared on A. lateriflorus and S. graminifolia was lower than the fecundity of females reared on S. canadensis. These results are consistent with the hypothesis that both intrinsic plant quality and the mobility of the foraging stage are important in the evolution of host range in T. virgata. These experiments were repeated over a 3-year period, using offspring from the survivors of the previous year for the 2nd and 3rd years. Over this time, individuals experienced "laboratory adaptation," and both accepted and increased their performance on previously unacceptable food plants.


Author(s):  
B.L. Jat ◽  
K.K. Dahiya ◽  
H.C. Sharma

Background: The legume pod borer, Helicoverpa armigera (Hübner), is one of the most damaging crop pests, including pigeonpea. Host plant resistance is a component of pest management and therefore, we standardize a nylon bag No-Choice Bioassay technique to screen for resistance to H. armigera under field conditions. Methods: Pigeonpea plants were infested with 24 h old 1, 2, 3, 4 and 5 larvae per plant inside the nylon bag. Observations were recorded on pod damage, larval survival, larval weight, pupation, adult emergence, and fecundity after 10 days. Result: Pigeonpea varieties AL-201, H03-41 and PAU-881 exhibited lower pod damage (15.89 to 19.77%) and larval weight (12.02 to 13.82 mg). The expression of resistance to H. armigera was associated with trichome density, pod wall thickness and higher amount of phenolic compounds and condensed tannins. Lower trichome density and thin pod walls and higher amounts of sugars rendered the varieties Paras, Manak and Pussa-992 more susceptible to H. armigera. Nylon bag assay can be used to screen and select pigeonpea cultivars for resistance to H. armigera.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2067 ◽  
Author(s):  
Mubasher Hussain ◽  
Biswojit Debnath ◽  
Muhammad Qasim ◽  
Bamisope Steve Bamisile ◽  
Waqar Islam ◽  
...  

The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae) is a very destructive crucifer-specialized pest that has resulted in significant crop losses worldwide. DBM is well attracted to glucosinolates (which act as fingerprints and essential for herbivores in host plant recognition) containing crucifers such as wintercress, Barbarea vulgaris (Brassicaceae) despite poor larval survival on it due to high-to-low concentration of saponins and generally to other plants in the genus Barbarea. B. vulgaris build up resistance against DBM and other herbivorous insects using glucosinulates which are used in plant defense. Aside glucosinolates, Barbarea genus also contains triterpenoid saponins, which are toxic to insects and act as feeding deterrents for plant specialist herbivores (such as DBM). Previous studies have found interesting relationship between the host plant and secondary metabolite contents, which indicate that attraction or resistance to specialist herbivore DBM, is due to higher concentrations of glucosinolates and saponins in younger leaves in contrast to the older leaves of Barbarea genus. As a response to this phenomenon, herbivores as DBM has developed a strategy of defense against these plant biochemicals. Because there is a lack of full knowledge in understanding bioactive molecules (such as saponins) role in plant defense against plant herbivores. Thus, in this review, we discuss the role of secondary plant metabolites in plant defense mechanisms against the specialist herbivores. In the future, trials by plant breeders could aim at transferring these bioactive molecules against herbivore to cash crops.


1999 ◽  
Vol 89 (5) ◽  
pp. 465-471 ◽  
Author(s):  
M. Sétamou ◽  
F. Schulthess ◽  
N.A. Bosque-Pérez ◽  
H-M. Poehling ◽  
C. Borgemeister

AbstractLife table studies of Mussidia nigrivenella Ragonot, a pest of maize in Benin, showed that host plant species had a significant effect on larval survival and developmental time. The maximum percentage of larvae surviving was recorded on jackbean, Canavalia ensiformis (36%) and lowest on maize (18%). Mean developmental time for larvae was longest on maize (19.8 days) and shortest on jackbean (17.2 days). The number of eggs laid was highest for females from larvae fed on jackbean (x– = 176), followed by velvetbean, Mucuna pruriens(x– = 143), and lowest for females where larvae had fed on maize (x–= 127). Longevity of ovipositing females was higher on jackbean (5.4 days) than of those from any other host plants. According to the growth index and life table statistics, jackbean was the most suitable host plant, followed by velvetbean, and maize, the least suitable. Thus, jackbeans should be recommended for use in mass rearing programmes of M.nigrivenella, e.g. as a host for parasitoids in future biological control programmes. Because of the high suitability of jack- and velvetbeans for M.nigrivenella, planting of these increasingly important cover crops should be timed in such a manner that the emergence of female moths from mature pods does not coincide with maize plants in a suitable developmental stage for oviposition and development of young M. nigrivenella larvae.


Sign in / Sign up

Export Citation Format

Share Document