pea aphids
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 35)

H-INDEX

39
(FIVE YEARS 4)

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1053
Author(s):  
Chunchun Li ◽  
Weining Yuan ◽  
Yuping Gou ◽  
Kexin Zhang ◽  
Qiangyan Zhang ◽  
...  

Natural and anthropogenic changes have been altering many environmental factors. These include the amount of solar radiation reaching the Earth’s surface. However, the effects of solar radiation on insect physiology have received little attention. As a pest for agriculture and horticulture, aphids are one of the most difficult pest groups to control due to their small size, high fecundity, and non-sexual reproduction. Study of the effects of UV-B radiation on aphid physiology may provide alternative control strategies in pest management. In this study, we examined the effects of UV-B radiation on protein and sugar contents, as well as the activities of protective enzymes, of the red and green morphs of the pea aphid over eight generations. The results indicated a significant interaction between UV-B radiation and aphid generations. Exposure of the pea aphids to UV-B radiation caused a significant decrease in the protein content and a significant increase in the glycogen and trehalose contents at each generation as measured in whole aphid bioassays. The enzyme activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) of the pea aphids changed significantly at each generation with UV-B treatments. The SOD activity increased over eight generations to the highest level at G7 generation. However, the enzyme activity of CAT first increased and then decreased with UV-B treatments, and POD mostly gradually decreased over the eight generations. Therefore, UV-B radiation is an environmental factor that could result in physiological changes of the pea aphid. Moreover, our study discovered that red and green aphids did not display a significant consistent difference in the response to the UV-B treatments. These results may prove useful in future studies especially for assessing their significance in the adaptation and management against UV-B radiation.


2021 ◽  
Vol 01 ◽  
Author(s):  
Martin John Martin ◽  
Zuqing Hu ◽  
Zhiqiang Lu

Background: Pea aphids (Acyrthosiphon pisum) possess a weak immune system, but they can firmly mount immunological responses. However, the influence of different plants on their defense against different microbes remains largely unknown. In addition, no previous research has integrated the growth, reproduction, and defense responses of pea aphids feeding on different plants. Objective: This study aims to investigate the growth, reproduction, and defense responses of pea aphids feeding on different plants. Methods: Pea aphids were cultivated on both Medicago sativa and Vicia faba. Growth and reproduction were evaluated. Additionally, we monitored the survival and microbial loads of pea aphids after bacterial and fungal infections. Results : Pea aphids reared on M. sativa had lower growth, lower intrinsic rate of increase, and lower finite rate of increase when compared to aphids feeding on V. faba. The net reproduction was lower in aphids feeding on M. sativa, although the difference was not significant. The mean time of generation and pre-reproductive periods was longer for aphids reared on M. sativa than for aphids reared on V. faba. In the infection experiments, we found that aphid survival was not affected by the host plant. However, A. pisum reared on M. sativa generally harbored fewer microbial loads than those reared on V. faba. Conclusions: The growth and reproduction of pea aphids are affected by the host plant. Aphids feeding on different plants had different tolerances to microbial infections. Our study sheds light on improving biological control programs for aphids.


mSystems ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Benjamin J. Parker

Within-host density is a critically important aspect of vertically transmitted symbioses that influences the fitness of both hosts and microbes. I review recent studies of symbiont density in insects, including my laboratory’s work on pea aphids and maternally transmitted bacteria.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 614
Author(s):  
Martin John Martin ◽  
Yueming Li ◽  
Li Ma ◽  
Yi Feng ◽  
Zhiqiang Lu

Non-immunological responses are important alternative strategies for animals to deal with pathogens. It has long been recognized that fecundity compensation and production of winged offspring are two common non-immunological responses used by aphids when confronted with predators or pathogens. However, the effects of host plant on these responses have received little attention. This study investigated the effects of host plant on non-immunological defense in the pea aphids, Acyrthosiphon pisum, after bacterial and fungal infections. The aphids were raised in two groups, with one group being raised on broad beans and the other group being raised on alfalfa. The secondary symbiont background was examined, and the aphids were then infected with bacteria and fungus to assess fecundity and winged offspring production. We found that aphids that had been fed alfalfa had fewer offspring than those fed broad beans. Alfalfa-fed aphids produced more winged offspring in response to S. aureus and B. bassiana infections. Our findings suggest that the host plant plays a key role in fecundity and winged offspring production in pea aphid colony.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 533
Author(s):  
Xiaomi Liu ◽  
Erica L. Culbert ◽  
Jennifer A. Brisson

Epigenetic mechanisms modulate gene expression levels during development, shaping how a single genome produces a diversity of phenotypes. Here, we begin to explore the epigenetic regulation of sexual dimorphism in pea aphids (Acyrthosiphon pisum) by focusing on microRNAs. Previous analyses of microRNAs in aphids have focused solely on females, so we performed deep sequencing of a sample containing early-stage males. We used this sample, plus samples from Genbank, to find 207 novel pea aphid microRNA coding loci. We localized microRNA loci to a chromosome-level assembly of the pea aphid genome and found that those on the X chromosome have lower overall expression compared to those on autosomes. We then identified a set of 19 putative male-biased microRNAs and found them enriched on the X chromosome. Finally, we performed protein-coding RNA-Seq of first instar female and male pea aphids to identify genes with lower expression in males. 10 of these genes were predicted targets of the 19 male-biased microRNAs. Our study provides the most complete set of microRNAs in the pea aphid to date and serves as foundational work for future studies on the epigenetic control of sexual dimorphism.


2021 ◽  
Vol 22 (11) ◽  
pp. 5951
Author(s):  
Xiaofei Zhou ◽  
Xiaoyu Ling ◽  
Huijuan Guo ◽  
Keyan Zhu-Salzman ◽  
Feng Ge ◽  
...  

Bacterial symbionts associated with insects are often involved in host development and ecological adaptation. Serratia symbiotica, a common facultative endosymbiont harbored in pea aphids, improves host fitness and heat tolerance, but studies concerning the nutritional metabolism and impact on the aphid host associated with carrying Serratia are limited. In the current study, we showed that Serratia-infected aphids had a shorter nymphal developmental time and higher body weight than Serratia-free aphids when fed on detached leaves. Genes connecting to fatty acid biosynthesis and elongation were up-regulated in Serratia-infected aphids. Specifically, elevated expression of fatty acid synthase 1 (FASN1) and diacylglycerol-o-acyltransferase 2 (DGAT2) could result in accumulation of myristic acid, palmitic acid, linoleic acid, and arachidic acid in fat bodies. Impairing fatty acid synthesis in Serratia-infected pea aphids either by a pharmacological inhibitor or through silencing FASN1 and DGAT2 expression prolonged the nymphal growth period and decreased the aphid body weight. Conversely, supplementation of myristic acid (C14:0) to these aphids restored their normal development and weight gain. Our results indicated that Serratia promoted development and growth of its aphid host through enhancing fatty acid biosynthesis. Our discovery has shed more light on nutritional effects underlying the symbiosis between aphids and facultative endosymbionts.


2021 ◽  
Vol 155 ◽  
pp. 104507
Author(s):  
Christy Grenier ◽  
Bryce Summerhays ◽  
Ryan Cartmill ◽  
Tanairi Martinez ◽  
Roxane Saisho ◽  
...  

Behaviour ◽  
2021 ◽  
pp. 1-21
Author(s):  
Rosalind K. Humphreys ◽  
Graeme D. Ruxton ◽  
Alison J. Karley

Abstract For herbivorous insects, dropping from the host plant is a commonly-observed antipredator defence. The use of dropping compared to other behaviours and its timing in relation to contact with a predator was explored in both pea aphids (Acyrthosiphon pisum) and potato aphids (Macrosiphum euphorbiae). Pea aphids dropped more frequently in response to ladybird adults (Adalia bipunctata) than lacewing larvae (Chrysoperla carnea). Potato aphids mainly walked away or backed-up in response to both predator types; but they dropped more frequently relative to other non-walking defences when faced with ladybird adults. Contact with a predator was an important influencer of dropping for both species, and most drops occurred from adjacent to the predator. Dropping appears to be a defence adaptively deployed only when the risk of imminent predation is high; factors that increase dropping likelihood include presence of faster-foraging predators such as adult ladybirds, predator proximity, and contact between aphid and predator.


2021 ◽  
Vol 288 (1942) ◽  
pp. 20203096
Author(s):  
Rachel E. Hammelman ◽  
Carrie L. Heusinkveld ◽  
Emily T. Hung ◽  
Alydia Meinecke ◽  
Benjamin J. Parker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document