scholarly journals Role of Saponins in Plant Defense Against Specialist Herbivores

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2067 ◽  
Author(s):  
Mubasher Hussain ◽  
Biswojit Debnath ◽  
Muhammad Qasim ◽  
Bamisope Steve Bamisile ◽  
Waqar Islam ◽  
...  

The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae) is a very destructive crucifer-specialized pest that has resulted in significant crop losses worldwide. DBM is well attracted to glucosinolates (which act as fingerprints and essential for herbivores in host plant recognition) containing crucifers such as wintercress, Barbarea vulgaris (Brassicaceae) despite poor larval survival on it due to high-to-low concentration of saponins and generally to other plants in the genus Barbarea. B. vulgaris build up resistance against DBM and other herbivorous insects using glucosinulates which are used in plant defense. Aside glucosinolates, Barbarea genus also contains triterpenoid saponins, which are toxic to insects and act as feeding deterrents for plant specialist herbivores (such as DBM). Previous studies have found interesting relationship between the host plant and secondary metabolite contents, which indicate that attraction or resistance to specialist herbivore DBM, is due to higher concentrations of glucosinolates and saponins in younger leaves in contrast to the older leaves of Barbarea genus. As a response to this phenomenon, herbivores as DBM has developed a strategy of defense against these plant biochemicals. Because there is a lack of full knowledge in understanding bioactive molecules (such as saponins) role in plant defense against plant herbivores. Thus, in this review, we discuss the role of secondary plant metabolites in plant defense mechanisms against the specialist herbivores. In the future, trials by plant breeders could aim at transferring these bioactive molecules against herbivore to cash crops.

2013 ◽  
Author(s):  
Yedidya Gafni ◽  
Moshe Lapidot ◽  
Vitaly Citovsky

TYLCV-Is is a major tomato pathogen, causing extensive crop losses in Israel and the U.S. We have identified a TYLCV-Is protein, V2, which acts as a suppressor of RNA silencing. Intriguingly, the counter-defense function of V2 may not be limited to silencing suppression. Our recent data suggest that V2 interacts with the tomato CYP1 protease. CYP1 belongs to the family of papain-like cysteine proteases which participate in programmed cell death (PCD) involved in plant defense against pathogens. Based on these data we proposed a model for dual action of V2 in suppressing the host antiviral defense: V2 targets SGS3 for degradation and V2 inhibits CYP1 activity. To study this we proposed to tackle three specific objectives. I. Characterize the role of V2 in SGS3 proteasomal degradation ubiquitination, II. Study the effects of V2 on CYP1 maturation, enzymatic activity, and accumulation and, III. Analyze the effects of the CYP1-V2 interaction on TYLCV-Is infection. Here we describe results from our study that support our hypothesis: the involvement of the host's innate immune system—in this case, PCD—in plant defense against TYLCV-Is. Also, we use TYLCV-Is to discover the molecular pathway(s) by which this plant virus counters this defense. Towards the end of our study we discovered an interesting involvement of the C2 protein encoded by TYLCV-Is in inducing Hypersensitive Response in N. benthamianaplants which is not the case when the whole viral genome is introduced. This might lead to a better understanding of the multiple processes involved in the way TYLCV is overcoming the defense mechanisms of the host plant cell. In a parallel research supporting the main goal described, we also investigated Agrobacteriumtumefaciens-encoded F-box protein VirF. It has been proposed that VirF targets a host protein for the UPS-mediated degradation, very much the way TYLCV V2 does. In our study, we identified one such interactor, an Arabidopsistrihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. Another target for VirF is VFP4, a transcription factor that both VirF and its plant functional homolog VBF target to degradation by UPS. Using RNA-seqtranscriptome analysis we showed that VFP4 regulates numerous plant genes involved in disease response, including responses to viral and bacterial infections. Detailed analyses of some of these genes indicated their involvement in plant protection against Agrobacterium infection. Thus, Agrobacterium may facilitate its infection by utilizing the host cell UPS to destabilize transcriptional regulators of the host disease response machinery that limits the infection.


Author(s):  
Mubasher Hussain ◽  
Muhammad Qasim ◽  
Bamisope Steve Bamisile ◽  
Liande Wang

The diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae) is very destructive crucifers specialized pest that has resulted in significant crop losses worldwide. The pest is well attracted to glucosinolate-containing crucifers such as; Barbarea vulgaris (Brassicaceae), and generally to other plants in the genus Barbarea. B. vulgaris on their part, build up resistance against DBM and other herbivorous insects using glucosinolates; that are plant secondary metabolites used in plant defense–contained only in plants of the order Brassicales. Aside glucosinolates, plants in this genus Barbarea (Brassicaceae) also contain saponins; which is toxic to insects and act as feeding deterrents for plant herbivores, most importantly, DBM, as it was found to prevent the survival of DBM larvae on the plant. Saponins are plant secondary metabolites have been established in higher concentrations in younger in contrast to older leaves within the same plant. Previous studies have found a relationship between ontogenetical changes in the host plant’s saponin content and attraction/resistance to P. xylostella. The younger leaves recorded higher concentrations of glucosinolates and saponins, which naturally attracts the plant herbivores. DBM was reported to have evolved mechanisms to avoid the toxicity of the former. The plant-herbivore had adapted glucosinolates for host plant recognition, feeding and oviposition stimulants. Despite the adaptation for oviposition by P. xylostella adults, larvae of the insect cannot survive on the same plant. An example is in some varieties of B. vulgaris. The triterpenoid saponins which act as feeding deterrents in larvae are responsible for this direct defense mechanism against P. xylostella. In the future, trials by plant breeders could aim at transferring this insect resistance to other crops. The previous trials had limited because of lack of knowledge on the biosynthetic pathways and regulatory networks of saponins. Herein, we discussed exclusively; saponins mediated plant defense mechanisms against the DBM.


2017 ◽  
Vol 86 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Edyta Górska-Drabik ◽  
Klaudia Magierowicz

Abstract Acrobasis advenella is an oligophagous species feeding on plants of the Rosaceae family. The differences in concentrations of host plant quality components, above all primary metabolites and the presence or absence of secondary metabolites, directly affects herbivore growth and development. The objectives of this research were to determine the food preferences of 1st instar larvae according to the chemical composition of host plants. The highest acceptance of rowan in the free choice test by 1st instar larvae, as compared to hawthorn and black chokeberry, is positively influenced by the high content of total sugars and phenolic acids. The conclusion to be drawn from the results is that the differences in food choice by 1st instar larvae feeding on fruits could have been due to the different chemical compositions of the fruit.


2020 ◽  
Vol 7 ◽  
Author(s):  
Juan Carlos Ku-Vera ◽  
Rafael Jiménez-Ocampo ◽  
Sara Stephanie Valencia-Salazar ◽  
María Denisse Montoya-Flores ◽  
Isabel Cristina Molina-Botero ◽  
...  

2021 ◽  
Author(s):  
Inna Vladimirovna Simakova ◽  
Alexey Alekseevich Vasiliev ◽  
Konstantin Vyacheslavovich Korsakov ◽  
Lyudmila Alexandrovna Sivokhina ◽  
Vladimir Vasilievich Salautin ◽  
...  

The purpose of this chapter was to study the influence of humic substances on the formation of the safety and quality of poultry meat. The high abilities of the natural and organic complex of humic acids “Reasil®HumicHealth” (produced in Russia, Saratov) to sorb and desorb five mycotoxins of compound feed (aflatoxin B1, ochratoxin, toxin T-2, zearalenone and fuminisin B1) were experimentally established. The hepatoprotective ability of humic acids was observed in experiments on broilers using rapeseed meal containing an increased amount of secondary plant metabolites that could cause liver damage. It was found out that the inclusion of humic acids in the amount of 1 and 1.5 g per 1 kg of feed to the main diet of broiler chickens has a more stable positive effect, both in terms of slaughter indicators (yield of semieviscerated carcasses and carcasses of complete evisceration), and in the production of the most valuable natural semi-finished products (breast, chicken legs) due to the intensive growth of muscle tissue. A clear improvement in the morpho-biochemical and immunological parameters of blood and micromorphometric characteristics of the organs of the immune system of poultry was noted with the use of different concentrations of humic acid salts. The use of the additive at the rate of 1 and 1.5 g per 1 kg of feed does not negatively affect the sensory indicators of finished culinary products.


Author(s):  
Annalene Grace E. Co

Medicinal plants have bioactive components which are used for curing various human diseases. They also play an essential role in healing. Fresh fruits and leaves of collected plant samples were used following standard solvent extraction protocol and qualitative analysis to detect secondary plant metabolites. The ethanolic extracts of eight indigenous medicinal plants of Quirino Province, Cagayan Valley, Philippines, were subjected to phytochemical analysis. Results confirmed alkaloids, saponins, phytosterols, phenolic compounds, and flavonoids in specific extracts. The inferences of the findings are discussed in light of the role of indigenous plants in the traditional medicinal system.


2018 ◽  
Vol 84 (10) ◽  
Author(s):  
Zohre Kurt ◽  
Marco Minoia ◽  
Jim C. Spain

ABSTRACT Resveratrol is among the best-known secondary plant metabolites because of its antioxidant, anti-inflammatory, and anticancer properties. It also is an important allelopathic chemical widely credited with the protection of plants from pathogens. The ecological role of resveratrol in natural habitats is difficult to establish rigorously, because it does not seem to accumulate outside plant tissue. It is likely that bacterial degradation plays a key role in determining the persistence, and thus the ecological role, of resveratrol in soil. Here, we report the isolation of an Acinetobacter species that can use resveratrol as a sole carbon source from the rhizosphere of peanut plants. Both molecular and biochemical techniques indicate that the pathway starts with the conversion of resveratrol to 3,5-dihydroxybenzaldehyde and 4-hydroxybenzaldehyde. The aldehydes are oxidized to substituted benzoates that subsequently enter central metabolism. The gene that encodes the enzyme responsible for the oxidative cleavage of resveratrol was cloned and expressed in Escherichia coli to establish its function. Its physiological role in the resveratrol catabolic pathway was established by knockouts and by the reverse transcription-quantitative PCR (RT-qPCR) demonstration of expression during growth on resveratrol. The results establish the presence and capabilities of resveratrol-degrading bacteria in the rhizosphere of the peanut plants and set the stage for studies to evaluate the role of the bacteria in plant allelopathy. IMPORTANCE In addition to its antioxidant properties, resveratrol is representative of a broad array of allelopathic chemicals produced by plants to inhibit competitors, herbivores, and pathogens. The bacterial degradation of such chemicals in the rhizosphere would reduce the effects of the chemicals. Therefore, it is important to understand the activity and ecological role of bacteria that biodegrade resveratrol near the plants that produce it. This study describes the isolation from the peanut rhizosphere of bacteria that can grow on resveratrol. The characterization of the initial steps in the biodegradation process sets the stage for the investigation of the evolution of the catabolic pathways responsible for the biodegradation of resveratrol and its homologs.


2010 ◽  
Vol 88 (7) ◽  
pp. 615-627 ◽  
Author(s):  
John T. Arnason ◽  
Mark A. Bernards

Plants defend themselves from pests with deterrent or toxic phytochemicals. In addition to the development of preformed mechanical barriers such as cutin and suberin, the first line of defense for plants against pathogens and herbivores is constitutive (preformed) biologically active inhibitors. Because of the adaptation of insects and pathogens to these inhibitors, plants have evolved a stunning diversity of new and different bioactive molecules to combat pests. Some representative mechanisms of plant defense include the use of antimicrobial, anitfeedant, and phototoxic molecules. Examples of natural product defenses of specific plant families are also described. Diversity and redundancy in plant defenses is key to slowing pest resistance to host-plant defenses.


Sign in / Sign up

Export Citation Format

Share Document