BODY SIZE VARIATION AND OPTIMAL BODY SIZE OF BUMBLE BEE QUEENS (HYMENOPTERA: APIDAE)

1988 ◽  
Vol 120 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Robin E. Owen

AbstractBody size and mass variation of queen bumble bees (Bombus Latr. spp.) were analyzed in relationship to hibernation survival and optimal body size. Body mass and size (measured by radial cell length) were significantly correlated in six of eight species. Also, spring queens of B. occidentalis Greene were, on average, significantly larger yet lighter than young fall queens. These observations were consistent with weight loss known to occur during hibernation coupled with greater mortality of small queens over the winter. Thus large queens may be at an advantage for this and other reasons (e.g. foraging efficiency, usurpation). However, an optimality model showed that an intermediate body size was optimal if the reproductive success of a colony (foundress queen and workers) was considered. The assumptions were that fitness did not increase linearly with body size but was a convex function, and that colonies only had a fixed amount of energy to invest in reproductive offspring leading to a trade-off between size and number.

2019 ◽  
Author(s):  
Atul Pandey ◽  
Uzi Motro ◽  
Guy Bloch

AbstractJuvenile hormone (JH) is a key regulator of insect development and reproduction. Given that JH commonly affects adult insect fertility, it has been hypothesized to also regulate behaviors such as dominance and aggression that are associated with reproduction. We tested this hypothesis in the bumble bee Bombus terrestris for which JH has been shown to be the major gonadotropin. We used the allatoxin Precocene-I (P-I) to reduce hemolymph JH titers and replacement therapy with the natural JH to revert this effect. In small orphan groups of workers with similar body size but mixed treatment, P-I treated bees showed lower aggressiveness, oogenesis, and dominance rank compared with control and replacement therapy treated bees. In similar groups in which all bees were treated similarly, there was a clear dominance hierarchy, even in P-I and replacement therapy treatment groups in which the bees showed similar levels of ovarian activation. In a similar experiment in which bees differed in body size, larger bees were more likely to be dominant despite their similar JH treatment and ovarian state. In the last experiment, we show that JH manipulation does not affect dominance rank in groups that had already established a stable dominance hierarchy. These findings solve previous ambiguities concerning whether or not JH affects dominance in bumble bees. JH positively affects dominance, but bees with similar levels of JH can nevertheless establish dominance hierarchies. Thus, multiple factors including JH, body size, and previous experience affect dominance and aggression in social bumble bees.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Katharina A. M. Engelhardt ◽  
Mark E. Ritchie ◽  
James A. Powell

Differences in body sizes may create a trade-off between foraging efficiency (foraging gains/costs) and access to resources. Such a trade-off provides a potential mechanism for ecologically similar species to coexist on one resource. We explored this hypothesis for tundra (Cygnus columbianus) and trumpeter swans (Cygnus buccinator), a federally protected species, feeding solely on sago pondweed (Stuckenia pectinata) tubers during fall staging and wintering in northern Utah. Foraging efficiency was higher for tundra swans because this species experienced lower foraging and metabolic costs relative to foraging gains; however, trumpeter swans (a) had longer necks and therefore had access to exclusive resources buried deep in wetland sediments and (b) were more aggressive and could therefore displace tundra swans from lucrative foraging locations. We conclude that body size differentiation is an important feature of coexistence among ecologically similar species feeding on one resource. In situations where resources are limiting and competition for resources is strong, conservation managers will need to consider the trade-off between foraging efficiency and access to resources to ensure ecologically similar species can coexist on a shared resource.


2003 ◽  
Vol 81 (9) ◽  
pp. 1623-1629 ◽  
Author(s):  
Achaz von Hardenberg ◽  
Bill Shipley ◽  
Marco Festa-Bianchet

Incisor-arcade size affects foraging efficiency in grazing ungulates and should be under strong selective pressure. We investigated individual variation in incisor-arcade size and its relationship with body mass and survival in bighorn sheep (Ovis canadensis) at Ram Mountain, Alberta, Canada, over 9 years. In adult ewes, incisor-arcade breadth and depth decreased with age, probably as a result of tooth wear. We found no effects of incisor-arcade size on survival of lambs or adult ewes. In adult ewes, an apparent positive effect of incisor-arcade size on survival disappeared when age was accounted for. Incisor-arcade breadth and depth had no effect on summer mass gain in lambs or adult ewes. Although linear models suggested that arcade breadth in lambs was correlated with summer mass gain, a latent variable path analysis model revealed that the correlation was due to an allometric relationship of arcade breadth with body size. Variation in incisor-arcade size in bighorn sheep appears to be due to individual variation in body size and age rather than to directional selection.


Ecology ◽  
2021 ◽  
Author(s):  
Jennifer I. Van Wyk ◽  
Eugene R. Amponsah ◽  
Wee Hao Ng ◽  
Lynn S. Adler
Keyword(s):  

Author(s):  
Ricardo Wilches ◽  
William H Beluch ◽  
Ellen McConnell ◽  
Diethard Tautz ◽  
Yingguang Frank Chan

Abstract Most phenotypic traits in nature involve the collective action of many genes. Traits that evolve repeatedly are particularly useful for understanding how selection may act on changing trait values. In mice, large body size has evolved repeatedly on islands and under artificial selection in the laboratory. Identifying the loci and genes involved in this process may shed light on the evolution of complex, polygenic traits. Here, we have mapped the genetic basis of body size variation by making a genetic cross between mice from the Faroe Islands, which are among the largest and most distinctive natural populations of mice in the world, and a laboratory mouse strain selected for small body size, SM/J. Using this F2 intercross of 841 animals, we have identified 111 loci controlling various aspects of body size, weight and growth hormone levels. By comparing against other studies, including the use of a joint meta-analysis, we found that the loci involved in the evolution of large size in the Faroese mice were largely independent from those of a different island population or other laboratory strains. We hypothesize that colonization bottleneck, historical hybridization, or the redundancy between multiple loci have resulted in the Faroese mice achieving an outwardly similar phenotype through a distinct evolutionary path.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maggie M. Hantak ◽  
Bryan S. McLean ◽  
Daijiang Li ◽  
Robert P. Guralnick

AbstractAnthropogenically-driven climate warming is a hypothesized driver of animal body size reductions. Less understood are effects of other human-caused disturbances on body size, such as urbanization. We compiled 140,499 body size records of over 100 North American mammals to test how climate and human population density, a proxy for urbanization, and their interactions with species traits, impact body size. We tested three hypotheses of body size variation across urbanization gradients: urban heat island effects, habitat fragmentation, and resource availability. Our results demonstrate that both urbanization and temperature influence mammalian body size variation, most often leading to larger individuals, thus supporting the resource availability hypothesis. In addition, life history and other ecological factors play a critical role in mediating the effects of climate and urbanization on body size. Larger mammals and species that utilize thermal buffering are more sensitive to warmer temperatures, while flexibility in activity time appears to be advantageous in urbanized areas. This work highlights the value of using digitized, natural history data to track how human disturbance drives morphological variation.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 421
Author(s):  
Amélie Gervais ◽  
Marc Bélisle ◽  
Marc J. Mazerolle ◽  
Valérie Fournier

Bumble bees are among the most effective pollinators in orchards during the blooming period, yet they are often threatened by the high levels of pesticide use in apple production. This study aimed to evaluate the influence of landscape enhancements (e.g., hedgerows, flower strips) on bumble bee queens in apple orchards. Bumble bee queens from 12 orchards in southern Québec (Canada) were marked, released, and recaptured in the springs and falls of 2017 to 2019. Half of the 12 orchards had landscape enhancements. Apples were harvested in 2018 and 2019 to compare their quality (weight, diameter, sugar level, and seed number) in sites with and without landscape enhancements. Species richness, as well as the occurrence of three species out of eight, was higher in orchards with landscape enhancements than in orchards without such structures. The occurrence of Bombus ternarius was lower in orchards with high levels of pesticide use. Apples had fewer seeds when collected in orchards with landscape enhancements and were heavier in orchards that used more pesticides. Our work provides additional evidence that landscape enhancements improve bumble bee presence in apple orchards and should therefore be considered as a means to enhance pollination within farms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Mertes ◽  
Julie Carcaud ◽  
Jean-Christophe Sandoz

AbstractSociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule’s chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.


Sign in / Sign up

Export Citation Format

Share Document