NOTES ON EARLY STAGES OF CERTAIN CANADIAN MICROLEPIDOPTERA

1935 ◽  
Vol 67 (4) ◽  
pp. 68-78 ◽  
Author(s):  
J. McDunnough

In the months of June and July field work was carried on by myself in western Nova Scotia at the following localities—Annapolis Royal in the Annaapolis Valley, South Milford in the interior and White Point Beach on the south shore near Liverpool. A number of life histories of various Microlepidoptera were worked out and data on the early stages secured. I offer the following notes on several of these species concerning which, as far as I know, our knowledge is very fragmentary. As in a previous work of this nature (1933, Can. Jour. Res. IX, 502-517) I have checked as far as possible both Fracker's larval classification (1915, Ill. Biol. Mon. II) and Mosher's work on the pupae (1916, Bull. Ill. Sta. Lab. Nat. Hist. XII, Art. 2).


1986 ◽  
Author(s):  
D J W Piper ◽  
P J Mudie ◽  
J R J Letson ◽  
N E Barnes ◽  
R J Iuliucci




1985 ◽  
Author(s):  
D J W Piper ◽  
R B Taylor ◽  
P Ricketts


Author(s):  
Henrik Stendal ◽  
Wulf Mueller ◽  
Nicolai Birkedal ◽  
Esben I. Hansen ◽  
Claus Østergaard

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stendal, H., Mueller, W., Birkedal, N., Hansen, E. I., & Østergaard, C. (1997). Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 66-74. https://doi.org/10.34194/ggub.v176.5064 _______________ The multidisciplinary SUPRASYD project (1992–96) focused on a regional investigation of the Palaeoproterozoic Ketilidian orogenic belt which crosses the southern tip of Greenland. Apart from a broad range of geological and structural studies (Nielsen et al., 1993; Garde & Schønwandt, 1994, 1995; Garde et al., 1997), the project included a mineral resource evaluation of the supracrustal sequences associated with the Ketilidian orogen (e.g. Mosher, 1995). The Ketilidian orogen of southern Greenland can be divided from north-west to south-east into: (1) a border zone in which the crystalline rocks of the Archaean craton are unconformably overlain by Ketilidian supracrustal rocks; (2) a major polyphase pluton, referred to as the Julianehåb batholith; and (3) extensive areas of Ketilidian supracrustal rocks, divided into psammitic and pelitic rocks with subordinate interstratified mafic volcanic rocks (Fig. 1). The Julianehåb batholith is viewed as emplaced in a magmatic arc setting; the supracrustal sequences south of the batholith have been interpreted as either (1) deposited in an intra-arc and fore-arc basin (Chadwick & Garde, 1996), or (2) deposited in a back-arc or intra-arc setting (Stendal & Swager, 1995; Swager, 1995). Both possibilities are plausible and infer subduction-related processes. Regional compilations of geological, geochemical and geophysical data for southern Greenland have been presented by Thorning et al. (1994). Mosher (1995) has recently reviewed the mineral exploration potential of the region. The commercial company Nunaoil A/S has been engaged in gold prospecting in South Greenland since 1990 (e.g. Gowen et al., 1993). A principal goal of the SUPRASYD project was to test the mineral potential of the Ketilidian supracrustal sequences and define the gold potential in the shear zones in the Julianehåb batholith. Previous work has substantiated a gold potential in amphibolitic rocks in the south-west coastal areas (Gowen et al., 1993.), and in the amphibolitic rocks of the Kutseq area (Swager et al., 1995). Field work in 1996 was focused on prospective gold-bearing sites in mafic rocks in South-East Greenland. Three M.Sc. students mapped showings under the supervision of the H. S., while an area on the south side of Kangerluluk fjord was mapped by H. S. and W. M. (Fig. 4).



Author(s):  
Adam A. Garde ◽  
Brian Chadwick ◽  
John Grocott ◽  
Cees Swager

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Garde, A. A., Chadwick, B., Grocott, J., & Swager, C. (1997). Metasedimentary rocks, intrusions and deformation history in the south-east part of the c. 1800 Ma Ketilidian orogen, South Greenland: Project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 60-65. https://doi.org/10.34194/ggub.v176.5063 _______________ The south-east part of the c. 1800 Ma Ketilidian orogen in South Greenland (Allaart, 1976) is dominated by strongly deformed and variably migmatised metasedimentary rocks known as the ‘Psammite and Pelite Zones’ (Chadwick & Garde, 1996); the sediments were mainly derived from the evolving Julianehåb batholith which dominates the central part of the orogen. The main purpose of the present contribution is to outline the deformational history of the Psammite Zone in the region between Lindenow Fjord and Kangerluluk (Fig. 2), investigated in 1994 and 1996 as part of the SUPRASYD project (Garde & Schønwandt, 1995 and references therein; Chadwick et al., in press). The Lindenow Fjord region has high alpine relief and extensive ice and glacier cover, and the fjords are regularly blocked by sea ice. Early studies of this part of the orogen were by boat reconnaissance (Andrews et al., 1971, 1973); extensive helicopter support in the summers of 1992 and 1994 made access to the inner fjord regions and nunataks possible for the first time.A preliminary geological map covering part of the area between Lindenow Fjord and Kangerluluk was published by Swager et al. (1995). Hamilton et al. (1996) have addressed the timing of sedimentation and deformation in the Psammite Zone by means of precise zircon U-Pb geochronology. However, major problems regarding the correlation of individual deformational events and their relationship with the evolution of the Julianehåb batholith were not resolved until the field work in 1996. The SUPRASYD field party in 1996 (Fig. 1) was based at the telestation of Prins Christian Sund some 50 km south of the working area (Fig. 2). In addition to base camp personnel, helicopter crew and the four authors, the party consisted of five geologists and M.Sc. students studying mafic igneous rocks and their mineralisation in selected areas (Stendal et al., 1997), and a geologist investigating rust zones and areas with known gold anomalies.



1997 ◽  
Vol 109 (10) ◽  
pp. 1279-1293 ◽  
Author(s):  
Keith Benn ◽  
Richard J. Horne ◽  
Daniel J. Kontak ◽  
Geoffrey S. Pignotta ◽  
Neil G. Evans


2018 ◽  
Author(s):  
Rebeka Smith ◽  
◽  
Thomas Badamo ◽  
David J. Barclay ◽  
Devorah Crupar ◽  
...  


1968 ◽  
Vol 2 (9) ◽  
pp. 615-624 ◽  
Author(s):  
Richard F. Smith ◽  
Harvey F. Ludwig
Keyword(s):  


1889 ◽  
Vol 6 (8) ◽  
pp. 350-352 ◽  
Author(s):  
George M. Dawson

In an article published in the Geological Magazine for August, 1888, an outline was presented of some facts resulting from recent investigations on the glaciation of British Columbia and adjacent regions, bearing more particularly on the flow of ice in a northerly direction brought to light by explorations in the Yukon district, but touching also on the south-eastern extension of the great western glacier-mass of the continent, which I have proposed to name the Cordilleran glacier. Field-work carried out by me during the summer of 1888 has resulted in the accumulation of many new facts relating to the southern part of the area, which was at one time covered by the Cordilleran glacier, from which it would appear that it may ultimately be possible not only to trace the various stages in the recession of the main front of the great confluent glacier beneath which the interior or plateau region of British Columbia was buried, but even to follow the later stages of its decline as it became broken up into numerous local glaciers confined to the valleys of the several mountain ranges which limit the plateau.



Sign in / Sign up

Export Citation Format

Share Document