Influence of burlap-band colour on larval, pupal, and egg-mass counts of Lymantria dispar (Lepidoptera: Lymantriidae)

2003 ◽  
Vol 135 (6) ◽  
pp. 869-877
Author(s):  
David B. Roden

AbstractThis paper describes the effect of the colour of burlap bands (black versus naturally coloured or tan burlap) affixed to red oak, Quercus rubra (L.) (Fagaceae), and how it influences selection of larval resting site, pupation site, and egg-mass counts of gypsy moth, Lymantria dispar (L.). In field experiments with half black and half tan burlap bands, the mean number of larvae, pupae, and egg masses were significantly greater under the black section of burlap. Individual burlap bands composed of either black or tan burlap affixed to separate trees produced similar significant results for larvae and pupae. When two burlap bands composed of opposite colours (black versus tan) were affixed to the same tree, significantly more larvae were found under the upper band, regardless of colour. In contrast, pupa and egg-mass densities were significantly greater under black bands, regardless of band position.

1992 ◽  
Vol 124 (2) ◽  
pp. 287-304 ◽  
Author(s):  
D.B. Roden ◽  
J.R. Miller ◽  
G.A. Simmons

AbstractIn laboratory and field experiments involving artificial and real tree trunks, all larval instars of gypsy moth [Lymantria dispar (L.)] crawling on a horizontal surface were influenced by the diameter, height, and species of a tree. For most larval instars, black artificial tree trunks were preferred to white trunks. The influence of the diameter and height of a host on larval attraction was examined with cardboard columns. The degree of larval attraction to a column of a certain diameter and height was positively correlated with the angle at which the column was presented. Significantly more larvae were attracted to bolts of red oak (Quercus rubra L.) than to white birch (Betula papyrifera Marsh.) or trembling aspen (Populus tremuloides Michx.). The implications of these findings and their possible effects on host colonization are discussed.


1994 ◽  
Vol 29 (3) ◽  
pp. 339-346 ◽  
Author(s):  
Kevin W. Thorpe ◽  
Ralph E. Webb ◽  
Jeffrey R. Aldrich ◽  
Kathy M. Tatman

The effects of sticky barrier bands, augmentative releases of the spined soldier bug, Podisus maculiventris (Say), and the deployment of P. maculiventris pheromone on gypsy moth, Lymantria dispar (L.), larval density in the canopy of oak trees were tested. Sticky barrier bands used alone reduced larval gypsy moth density by ≈35%. The release of 5,810 P. maculiventris nymphs per tree or the deployment of P. maculiventris pheromone to trees on which sticky barrier bands had been applied had no additional effect on gypsy moth larval density. None of the treatments affected the number of gypsy moth egg masses produced. Significantly more P. maculiventris adults were observed on trees with the pheromone, but higher numbers of nymphs were not subsequently observed on these trees. Counts of gypsy moths beneath burlap bands prior to gypsy moth pupation were about four times higher on unbanded than on banded trees, but counts of pupae beneath burlap bands did not differ between treatments.


2003 ◽  
Vol 38 (2) ◽  
pp. 300-313 ◽  
Author(s):  
R. E. Webb ◽  
G. B. White ◽  
K. W. Thorpe

Previous observations show that gypsy moth, Lymantria dispar L., mortality induced by the fungus Entomophaga maimaiga Humber, Shimazu & Soper is quickly manifested as host population density increases. However, the gypsy moth nucleopolyhedrovirus (LdMNPV) lags behind the rebounding gypsy moth population. In this study, egg masses were contaminated with virus to successfully augment LdMNPV in gypsy moth populations in Virginia. Laboratory bioassays determined the approximate LdMNPV dose to apply to egg masses with and without the addition of the virus enhancer Blankophor BBH to the spray mixture. The highest dose of virus (5.3 × 105 PIBs/mL) tested without Blankophor BBH gave 82.3% mortality. Mortality for this virus dose increased to 91.8% when 1% Blankophor BBH was added. Field studies established that application of virus at an earlier date (04 April) was as efficacious as an application made at a later date (12 April); this study also included a further assessment of the addition of Blankophor BBH to the spray mixture. While application of LdMNPV + Blankophor BBH resulted in faster kill, levels of kill were similar (88.0% for early treatment and 78.8% for later treatment for virus applied alone versus 87.8% for early treatment and 89.1% for later treatment for virus + Blankophor BBH). However, a higher than expected number of cadavers in the LdMNPV + Blankophor BBH treatments had few or no polyhedral inclusion bodies (PIBs). Finally, virus infection resulting from the application of LdMNPV to pupae in June 1998 was compared with infection levels seen after the application of virus to egg masses in April 1999. The April 1999 treatment to egg masses clearly resulted in a higher kill of emerging larvae (=79.3% mortality) compared to the June 1998 treatment to female pupae (with virus incorporated into the egg masses laid by females after adult emergence) (=13.7% mortality). The virus was recovered season-long from larvae collected from populations in the treated plots (but not from control plots), indicating within season spread.


1992 ◽  
Vol 27 (4) ◽  
pp. 337-344 ◽  
Author(s):  
John D. Podgwaite ◽  
Richard C. Reardon ◽  
Gerald S. Walton ◽  
Jeffrey Witcosky

Gypsy moth, Lymantria dispar L., populations in six northern Virginia plots were aerially treated with the nucleopolyhedrosis virus product, Gypchek. Two applications of an aqueous Orzan LS-Pro Mo-Rhoplex B60A tank mix, each at 18.7 liters and 1.25 × 1012 polyhedral inclusion bodies per ha, reduced larvae by more than 92% and egg masses by more than 94% in all but one of the treated plots. Defoliation averaged 22% in Gypchek-treated plots compared to 67% in control plots.


1982 ◽  
Vol 114 (12) ◽  
pp. 1109-1120 ◽  
Author(s):  
M. W. Brown ◽  
E. Alan Cameron

AbstractThe spatial distribution of adultOoencyrtus kuvanae(Howard) (Hymenoptera: Encyrtidae) was examined in central Pennsylvania during 1978–1980. Data were gathered over a wide range of gypsy moth (Lymantria dispar(L.) (Lepidoptera: Lymantriidae)) densities and from all phases of population growth. There was a linear relationship between the log variance and log mean, fitting Taylor's Power Law with a power of 1.27. The degree of aggregation inO. kuvanaepopulations, as measured by the variance-to-mean ratio, was correlated positively with the abundance of the parasite, and was independent of host density. Aggregation was believed to result from the habit of the female parasite ovipositing repeatedly on the same egg mass, and the resultant progeny emerging synchronously. Behavior and density ofO. kuvanaepopulations were found to depend upon the gypsy moth population condition, i.e., low, rising, high stable, outbreak, or collapsed. The frequency distribution ofO. kuvanaepopulations fit the Poisson at densities less than 0.2 parasite adult per egg mass, a condition which occurred early and late (July, November) in the season, and the negative binomial above this density; a few distributions fit the log normal. The data were also analyzed using analyses of variance (multivariate and univariate), correlation, and regression techniques. All main effects, i.e., study area, host egg mass volume, egg mass height from the ground (within the 0–2 m sampling universe), aspect of the egg mass on the tree, and tree species, were important in explaining the variance in parasite abundance; study area differences were the most important. The effects of aspect and tree species were explained on the basis of small sample sizes, and not studied further. There was a positive correlation between host egg mass volume (= size) and parasite abundance. There was also a positive correlation between the height of the egg mass and parasite abundance during the summer; however, this relationship became negative by late fall. This seasonal change in vertical distribution was attributed to the tendency ofO. kuvanaeto be closer to the ground where they overwinter. Variation in adult abundance was generally greater among gypsy moth egg masses on different trees than among egg masses on the same tree, except at low parasite densities. This was attributed to the parasites searching for egg masses on one tree before dispersing to another.


Sign in / Sign up

Export Citation Format

Share Document