Disruption of red turpentine beetle attraction to baited traps by the addition of California fivespined ips pheromone components

2005 ◽  
Vol 137 (6) ◽  
pp. 748-752 ◽  
Author(s):  
Christopher J. Fettig ◽  
Robert R. Borys ◽  
Christopher P. Dabney ◽  
Stephen R. McKelvey ◽  
Daniel R. Cluck ◽  
...  

AbstractThe red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Scolytidae), is a common bark beetle species found throughout much of North America. In California, D. valens and the California fivespined ips, Ips paraconfusus Lanier (Coleoptera: Scolytidae), are sympatric and often colonize the same tree. In an unrelated study, we observed that I. paraconfusus attack densities in logging debris were inversely related to D. valens attacks on freshly cut stumps. In this study, we test the hypothesis that allomonal inhibition occurs between these two species. Components of the aggregation pheromone of I. paraconfusus (racemic ipsenol, (+)-ipsdienol, and (–)-cis-verbenol) inhibited the response of D. valens to attractant-baited traps. Substitution of racemic ipsdienol for (+)-ipsdienol did not alter this effect. Doubling the release rate did not enhance inhibition. Racemic ipsdienol was not attractive to I. paraconfusus. Temnochila chlorodia (Mannerheim, 1843) (Coleoptera: Trogositidae), a common bark beetle predator, was attracted to the I. paraconfusus aggregation pheromone. These results could have important implications for the development of an effective semiochemical-based management tool for D. valens.


2007 ◽  
Vol 139 (1) ◽  
pp. 141-145 ◽  
Author(s):  
Christopher J. Fettig ◽  
Stephen R. McKelvey ◽  
Christopher P. Dabney ◽  
Roberty R. Borys

AbstractThe red turpentine beetle, Dendroctonus valens LeConte, 1860 (Coleoptera: Curculionidae, Scolytinae), is a common bark beetle found throughout much of North America and China. In 2004, we observed that attack densities of the California fivespined ips, Ips paraconfusus Lanier, 1970 (Coleoptera: Curculionidae, Scolytinae), in logging debris were inversely related to D. valens attacks on freshly cut stumps, which led to the demonstration that components of the aggregation pheromone of I. paraconfusus inhibited the response of D. valens to attractant-baited traps. In this study, we test the response of D. valens and Temnochila chlorodia (Mannerheim, 1843) (Coleoptera: Trogositidae), a common bark beetle predator, to racemic ipsenol, racemic ipsdienol, and (−)-cis-verbenol (IPSR) in the presence and absence of two release rates of (−)-verbenone. The addition of a relatively low release rate of (−)-verbenone (4 mg/24 h) to attractant-baited traps did not affect catch and had no significant effect on the response of D. valens to IPSR. IPSR significantly reduced D. valens attraction to baited traps. The addition of high release rates of (−)-verbenone (50 mg/24 h) to IPSR significantly increased inhibition; however, the effect was not significantly different from that observed with (−)-verbenone alone (50 mg/24 h). Temnochila chlorodia was attracted to traps baited with (−)-β-pinene, (+)-3-carene, and (+)-α-pinene. The addition of (−)-verbenone (50 mg/24 h) significantly increased attraction. Traps baited with IPSR caught significantly more T. chlorodia than those baited with (−)-verbenone. Few other beetles were collected. We are hopeful that these results will help facilitate the development of an effective tool for protecting Pinus spp. from D. valens infestations.



The Holocene ◽  
2020 ◽  
Vol 30 (6) ◽  
pp. 847-857 ◽  
Author(s):  
Nick Schafstall ◽  
Niina Kuosmanen ◽  
Christopher J Fettig ◽  
Miloš Knižek ◽  
Jennifer L Clear

Outbreaks of conifer bark beetles in Europe and North America have increased in scale and severity in recent decades. In this study, we identify existing fossil records containing bark beetle remains from the end of the Last Glacial Maximum (~14,000 cal. yr BP) to present day using the online databases Neotoma and BugsCEP and literature searches, and compare these data with modern distribution data of selected tree-killing species. Modern-day observational data from the Global Biodiversity Information Facility (GBIF) database was used to map recorded distributions from AD 1750 to present day. A total of 53 fossil sites containing bark beetle remains, from both geological and archeological sites, were found during our searches. Fossil sites were fewer in Europe ( n = 21) than North America ( n = 32). In Europe, 29% of the samples in which remains were found were younger than 1000 cal. yr BP, while in North America, remains were mainly identified from late Glacial (~14,000–11,500 cal. yr BP) sites. In total, the fossil records contained only 8 of 20 species we consider important tree-killing bark beetles in Europe and North America based on their impacts during the last 100 years. In Europe, Ips sexdentatus was absent from the fossil record. In North America, Dendroctonus adjunctus, Dendroctonus frontalis, Dendroctonus jeffreyi, Dendroctonus pseudotsugae, Dryocoetes confusus, Ips calligraphus, Ips confusus, Ips grandicollis, Ips lecontei, Ips paraconfusus, and Scolytus ventralis were absent. Overall, preserved remains of tree-killing bark beetles are rare in the fossil record. However, by retrieving bulk material from new and existing sites and combining data from identified bark beetle remains with pollen, charcoal, tree rings, and geochemistry, the occurrence and dominance of bark beetles, their outbreaks, and other disturbance events can be reconstructed.



2006 ◽  
Vol 41 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Christopher J. Fettig ◽  
Christopher P. Dabney

Bark beetles (Coleoptera: Scolytidae) are commonly recognized as the most important mortality agent in western coniferous forests. In this study, we describe the abundance of bark beetle predators collected in multiple-funnel traps baited with exo-brevicomin, frontalin and myrcene in northern California during 2003 and 2004. A total of 32,903 Temnochila chlorodia (Mannerheim), 79 Enoclerus lecontei (Wolcott), and 12 E. sphegeus (F.) were collected. The seasonal abundance of E. lecontei and E. sphegeus was not analyzed because too few individuals were collected. In general, T. chlorodia was most abundant in late spring, but a second smaller peak in activity was observed in late summmer. Overall, the ratio of males to females was 0.82. A significant temporal effect was observed in regard to sex ratios with more males collected during later sample periods. Temnochila chlorodia flight activity patterns were similar between years, but activity was generally delayed several weeks in 2003.





Oikos ◽  
1978 ◽  
Vol 31 (2) ◽  
pp. 184 ◽  
Author(s):  
Alf Bakke


2019 ◽  
Vol 45 (4) ◽  
pp. 356-365 ◽  
Author(s):  
Rizan Rahmani ◽  
Erika A. Wallin ◽  
Lina Viklund ◽  
Martin Schroeder ◽  
Erik Hedenström


2020 ◽  
Vol 49 (3) ◽  
pp. 593-600
Author(s):  
D R Miller ◽  
C M Crowe

Abstract In 2014–2019, we conducted six experiments in north-central Georgia in an attempt to verify the aggregation pheromone response of the ambrosia beetle Gnathotrichus materiarius (Fitch) (Coleoptera: Curculionidae: Scolytinae: Scolytini: Corthylina) to sulcatol known to be produced by male G. materiarius; we failed to catch any G. materiarius. However, we did find that another corthyline ambrosia beetle species Monarthrum mali (Fitch) was attracted to (R)-(–)-sulcatol, whereas the longhorn beetle Leptostylus asperatus (Haldeman) (Coleoptera: Cerambycidae: Lamiinae) was attracted to (S)-(+)-sulcatol. Attraction of both species was unaffected by the respective antipodes. Ethanol enhanced attraction of both species to traps baited with sulcatol. In at least one experiment, attraction to ethanol-baited traps was enhanced by sulcatol for Xylosandrus crassiusculus (Motschulsky), Xyleborus spp., and Hypothenemus spp. but reduced for Cnestus mutilatus (Blandford) (Coleoptera: Curculionidae: Scolytinae). Additionally, traps baited with ethanol and racemic sulcatol [50% (S)-(+): 50% (R)-(-)] caught the greatest numbers of four species of beetle predators: Coptodera aerata Dejean (Coleoptera: Carabidae), Colydium lineola Say (Coleoptera: Zopheridae), Madoniella dislocata (Say), and Pyticeroides laticornis (Say) (Coleoptera: Cleridae). Ethanol but not sulcatol attracted Temnoscheila virescens (F.) (Coleoptera: Trogossitidae). Information on interspecific relationships within forested communities may help us to better determine the roles of these species in maintaining stable and resilient forested ecosystems.



1965 ◽  
Vol 97 (5) ◽  
pp. 449-492 ◽  
Author(s):  
Richard W. Bushing

AbstractA resumé of the North American literature concerned with hymenopterous parasites of bark beetles is presented. Morphology, seasonal history, host-tree selection, hyperparasitism, importation and colonization and their influence upon control of the host are briefly discussed.Parasites of a given host or hosts of a known parasite can easily be found in two different lists. Parasites are listed below in an alphabetical list of bark beetle species. Hosts, including some species other than bark beetles, are listed under a separate list of parasite families and genera. Host-parasite associations in each list are supported by a numerical reference to the literature cited.



1992 ◽  
Vol 124 (3) ◽  
pp. 559-560
Author(s):  
R.R. Setter ◽  
J.H. Borden

Semiochemical-mediated behavior of the striped ambrosia beetle, Trypodendron lineatum (Olivier) (Coleoptera: Scolytidae), has received extensive study. In selecting and mass-attacking hosts in nature, it utilizes a blend of volatiles, including the aggregation pheromone, lineatin, and the host kairomones α-pinene and ethanol (MacConnell et al. 1977; Vité and Bakke 1979; Borden et al. 1982; Bakke 1983; Lindgren et al. 1983). In single cell recordings of European T. lineatum olfactory cells, Tømmerås and Mustaparta (1989) reported no response to pheromones of other scolytid species. However, Benz et al. (1986) reported some response in the field by European T. lineatum to a blend of synthetic Ips typographus (L.) pheromones, although a single attractant was not identified. We report that frontalin, a pheromone utilized by numerous Dendroctonus spp., is an attractive kairomone for T. lineatum in western North America.



Sign in / Sign up

Export Citation Format

Share Document