ips paraconfusus
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 2)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Stephanie E. Steele ◽  
Oliver Ryder ◽  
Joyce Maschinski

Abstract The ability of tree species to adapt to water stress and increased frequency of bark beetle outbreaks with climate change may increase with population size and standing genetic variation, calling into question the resilience of small, rare plant populations. The Torrey pine (Pinus torreyana) is a rare, genetically depauperate conifer that occurs naturally in a mainland and island population in southern California. Due to recent declines in the mainland population coinciding with drought and Ips paraconfusus bark beetle outbreaks, the species would benefit from an assessment of adaptive genetic diversity. Here, we use RNA-Seq to survey gene-coding diversity across 40 individuals to 1) characterize patterns of genetic diversity in the species and 2) test for genetic differentiation between trees that succumbed to beetle attack or survived following an outbreak. Consistent with previous studies, we found few genetic variants, with most SNPs occurring as fixed differences between populations. However, we found structure within the mainland and polymorphisms segregating in both populations. Interestingly, we found differentiation in genotypes between attacked and surviving trees, 11 SNPs associated with survival status, and an enrichment of defense-related functions among the top 10% of SNPs. While low diversity suggests limited adaptive capacity, genetic associations with survival in functionally relevant genes suggest adaptive potential for bark beetle defense. This initial study prompts future research to explore the genetic basis of putative resistance and suggests conservation efforts should protect surviving genotypes and the full spectrum of genetic diversity across populations to preserve the evolutionary potential of the species.


The Holocene ◽  
2020 ◽  
Vol 30 (6) ◽  
pp. 847-857 ◽  
Author(s):  
Nick Schafstall ◽  
Niina Kuosmanen ◽  
Christopher J Fettig ◽  
Miloš Knižek ◽  
Jennifer L Clear

Outbreaks of conifer bark beetles in Europe and North America have increased in scale and severity in recent decades. In this study, we identify existing fossil records containing bark beetle remains from the end of the Last Glacial Maximum (~14,000 cal. yr BP) to present day using the online databases Neotoma and BugsCEP and literature searches, and compare these data with modern distribution data of selected tree-killing species. Modern-day observational data from the Global Biodiversity Information Facility (GBIF) database was used to map recorded distributions from AD 1750 to present day. A total of 53 fossil sites containing bark beetle remains, from both geological and archeological sites, were found during our searches. Fossil sites were fewer in Europe ( n = 21) than North America ( n = 32). In Europe, 29% of the samples in which remains were found were younger than 1000 cal. yr BP, while in North America, remains were mainly identified from late Glacial (~14,000–11,500 cal. yr BP) sites. In total, the fossil records contained only 8 of 20 species we consider important tree-killing bark beetles in Europe and North America based on their impacts during the last 100 years. In Europe, Ips sexdentatus was absent from the fossil record. In North America, Dendroctonus adjunctus, Dendroctonus frontalis, Dendroctonus jeffreyi, Dendroctonus pseudotsugae, Dryocoetes confusus, Ips calligraphus, Ips confusus, Ips grandicollis, Ips lecontei, Ips paraconfusus, and Scolytus ventralis were absent. Overall, preserved remains of tree-killing bark beetles are rare in the fossil record. However, by retrieving bulk material from new and existing sites and combining data from identified bark beetle remains with pollen, charcoal, tree rings, and geochemistry, the occurrence and dominance of bark beetles, their outbreaks, and other disturbance events can be reconstructed.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
John A. Byers ◽  
Göran Birgersson

A paradigm developed in the 1970s thatIpsbark beetles biosynthesize their aggregation pheromone components ipsenol and ipsdienol by hydroxylating myrcene, a host tree monoterpene. Similarly, hostα-pinene was hydroxylated to a third pheromone componentcis-verbenol. In 1990, however, we reported that amounts of ipsenol and ipsdienol produced by maleIps paraconfusus(Coleoptera: Scolytinae) feeding in five host pine species were nearly the same, even though no detectable myrcene precursor was detected in one of these pines (Pinus sabiniana). Subsequent research showed ipsenol and ipsdienol are also biosynthesized from smaller precursors such as acetate and mevalonate, and thisde novopathway is the major one, while host tree myrcene conversion by the beetle is the minor one. We report concentrations of myrcene,α-pinene and other major monoterpenes in five pine hosts (Pinus ponderosa,P. lambertiana,P. jeffreyi,P. sabiniana, andP. contorta) ofI. paraconfusus. A scheme for biosynthesis of ipsdienol and ipsenol from myrcene and possible metabolites such as ipsenone is presented. Mass spectra and quantities of ipsenone are reported and its possible role in biosynthesis of aggregation pheromone. Coevolution of bark beetles and host trees is discussed in relation to pheromone biosynthesis, host plant selection/suitability, and plant resistance.


2007 ◽  
Vol 139 (1) ◽  
pp. 141-145 ◽  
Author(s):  
Christopher J. Fettig ◽  
Stephen R. McKelvey ◽  
Christopher P. Dabney ◽  
Roberty R. Borys

AbstractThe red turpentine beetle, Dendroctonus valens LeConte, 1860 (Coleoptera: Curculionidae, Scolytinae), is a common bark beetle found throughout much of North America and China. In 2004, we observed that attack densities of the California fivespined ips, Ips paraconfusus Lanier, 1970 (Coleoptera: Curculionidae, Scolytinae), in logging debris were inversely related to D. valens attacks on freshly cut stumps, which led to the demonstration that components of the aggregation pheromone of I. paraconfusus inhibited the response of D. valens to attractant-baited traps. In this study, we test the response of D. valens and Temnochila chlorodia (Mannerheim, 1843) (Coleoptera: Trogositidae), a common bark beetle predator, to racemic ipsenol, racemic ipsdienol, and (−)-cis-verbenol (IPSR) in the presence and absence of two release rates of (−)-verbenone. The addition of a relatively low release rate of (−)-verbenone (4 mg/24 h) to attractant-baited traps did not affect catch and had no significant effect on the response of D. valens to IPSR. IPSR significantly reduced D. valens attraction to baited traps. The addition of high release rates of (−)-verbenone (50 mg/24 h) to IPSR significantly increased inhibition; however, the effect was not significantly different from that observed with (−)-verbenone alone (50 mg/24 h). Temnochila chlorodia was attracted to traps baited with (−)-β-pinene, (+)-3-carene, and (+)-α-pinene. The addition of (−)-verbenone (50 mg/24 h) significantly increased attraction. Traps baited with IPSR caught significantly more T. chlorodia than those baited with (−)-verbenone. Few other beetles were collected. We are hopeful that these results will help facilitate the development of an effective tool for protecting Pinus spp. from D. valens infestations.


2005 ◽  
Vol 137 (6) ◽  
pp. 748-752 ◽  
Author(s):  
Christopher J. Fettig ◽  
Robert R. Borys ◽  
Christopher P. Dabney ◽  
Stephen R. McKelvey ◽  
Daniel R. Cluck ◽  
...  

AbstractThe red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Scolytidae), is a common bark beetle species found throughout much of North America. In California, D. valens and the California fivespined ips, Ips paraconfusus Lanier (Coleoptera: Scolytidae), are sympatric and often colonize the same tree. In an unrelated study, we observed that I. paraconfusus attack densities in logging debris were inversely related to D. valens attacks on freshly cut stumps. In this study, we test the hypothesis that allomonal inhibition occurs between these two species. Components of the aggregation pheromone of I. paraconfusus (racemic ipsenol, (+)-ipsdienol, and (–)-cis-verbenol) inhibited the response of D. valens to attractant-baited traps. Substitution of racemic ipsdienol for (+)-ipsdienol did not alter this effect. Doubling the release rate did not enhance inhibition. Racemic ipsdienol was not attractive to I. paraconfusus. Temnochila chlorodia (Mannerheim, 1843) (Coleoptera: Trogositidae), a common bark beetle predator, was attracted to the I. paraconfusus aggregation pheromone. These results could have important implications for the development of an effective semiochemical-based management tool for D. valens.


2002 ◽  
Vol 134 (4) ◽  
pp. 519-528 ◽  
Author(s):  
Andrew J. Storer ◽  
David L. Wood ◽  
Thomas R. Gordon

AbstractIps paraconfusus Lanier is a vector of the pitch canker fungus, Fusarium circinatum Nirenberg and O’Donnell, in California. Multiple infections of Monterey pine, Pinus radiata D. Don. (Pinaceae), branches and main stems appear to predispose trees to infestation by I. paraconfusus. The effect of cankers produced in response to F. circinatum on oviposition and gallery construction was investigated. Introduction of beetles into artificially induced or naturally occurring cankers was less likely to result in oviposition and resulted in shorter galleries than introductions into logs without cankers. Of all adults that produced eggs, the mean number of eggs per adult was no different in logs with cankers than in canker-free logs; however, the distance across the grain from the introduction point to the first egg was greater for adults introduced into cankers than for adults introduced away from cankers. These results indicate that the pitch canker pathogen has a negative effect on I. paraconfusus, as cankers produced in response to the pathogen are unsuitable for exploitation by the insect.


Sign in / Sign up

Export Citation Format

Share Document