Molecular cloning, characterization, and expression analysis of a novel sema-2a homologue in Polyrhachis vicina (Hymenoptera: Formicidae)

2010 ◽  
Vol 142 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Jing Luo ◽  
Geng-Si Xi ◽  
Shu-Min Lü ◽  
Ke Li ◽  
Qing Li

AbstractThe semaphorin gene family plays important roles in axonal guidance in vertebrates and invertebrates. Semaphorin 2a, a member of the semaphorin family, belongs to class 2, which is found only in invertebrates. In our study, semaphorin 2a was cloned from the ant Polyrhachis vicina Roger. The full length of P. vicina semaphorin 2a (Pv-sema-2a) is 2763 base pairs (bp) and it contains a 5′-untranslated region (UTR) 92 bp long and a 3′-UTR 521 bp long. The open reading frame of Pv-sema-2a encodes a 716-amino-acid protein with a predicted molecular mass of 81.1 kilodaltons. Real-time quantitative reverse-transcription – polymerase chain reaction indicated that Pv-sema-2a mRNA is differentially expressed during P. vicina development, in the whole bodies as well as the heads of different castes. The high mRNA levels in embryos and pupae suggest that Pv-sema-2a plays an important role in ant development.

2008 ◽  
Vol 140 (3) ◽  
pp. 312-323 ◽  
Author(s):  
Shumin Lü ◽  
Gengsi Xi ◽  
Xiaohui Wang

AbstractQM, a tumor-suppressor gene, plays an important role in cell growth, differentiation, and apoptosis. In this report, a homologue of human QM was isolated from the ant Polyrhachis vicina Roger. The full-length cDNA of P. vicina QM (PvQM) is 827 base pairs (bp) and contains a 5′-untranslated region of 91 bp and a 3′-untranslated region of 77 bp. The open reading frame of PvQM encodes a deduced 219-amino acid peptide with a predicted molecular mass of 25.1 kilodaltons. The results of sequence alignments indicate that the PvQM protein shares an overall identity of 76.7%–98.2% with other known QM homologues, and is most closely related to that of Apis mellifera L. (Hymenoptera: Apidae). Real-time quantitative reverse transcription - polymerase chain reaction was performed to compare PvQM mRNA expression during P. vicina development and within different castes. The data revealed that PvQM mRNA is differentially expressed during P. vicina development, with the highest expression level in embryos and the lowest in late-instar larvae and pupae. The levels of PvQM transcripts also vary among castes, with higher levels in workers and lower levels in both males and females. These results suggest that PvQM is developmentally and caste-specifically regulated at the level of transcription.


2007 ◽  
Vol 132 (1) ◽  
pp. 97-101
Author(s):  
Suping Zhou ◽  
Roger Sauve ◽  
Fur-Chi Chen

A cysteine proteinase gene (DQ403257) with an open reading frame of 1125 base pairs was isolated from Pachysdandra terminalis. The primary translated peptide has a predicted length of 374 amino acids, pI (isoelectric point) of 5.70, and molecular mass of 40.9 kDa. The Peptidase_C1 domain is between residue 141 and 367. The proteinase has a conserved motif Gly-Xaa-Thy-Xaa-Phe-Xaa-Asn in the pro region. Sequence comparison shows that the deduced peptide shares 82% identity with the cysteine proteinase RD19a precursor (RD19) (accession P43296) from Arabidopsis thaliana (L.) Heynh. Real-time quantitative reverse-transcriptase–polymerase chain reaction revealed that the gene is induced by treatments of 1 to 7 days of darkness, 2 hours and 3 to 7 days at 5 °C, and 3 days at 38 °C.


Sequencing ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Seow-Ling Teh ◽  
Janna Ong Abdullah ◽  
Parameswari Namasivayam

Vanda Mimi Palmer, a hybrid of Vanda Tan Chay Yan and Vanda tessellata (Roxb.) Hk.f. ex G. Don, is cultivated as a potted ornamental plant mainly for its fragrance rather than its look. Plant acetyl-CoA-C-acetyltransferase (ACA) is involved in the condensation of two acetyl-CoAs to form acetoacetyl-CoA, which condenses with another acetyl-CoA to yield a crucial molecule, 3-hydroxyl-3-methylglutaryl-CoA, at the initial step of the mevalonate (MVA) pathway. An ACA gene from vandaceous orchid has never been reported. We describe the isolation and molecular characterization of an ACA-like gene from V. Mimi Palmer (designated as VMPACA) to facilitate a better understanding of the terpenoid biosynthesis pathway in orchids. The deduced VMPACA encodes a 376-amino-acid protein with a molecular weight of 39 kDa, which comprises an open reading frame of 1128 bp. It is flanked by 87 bp of 5′-untranslated region and 174 bp of 3′-untranslated region including a poly-A tail. Its protein sequence is 81% identical to other plant ACAs and contains a thiolase active site. The fluctuation expression pattern of VMPACA transcript by real-time RT-PCR showed that it is developmentally and temporally regulated with predominant expression in outer and lateral inner tepals compared to vegetative tissues.


1991 ◽  
Vol 66 (04) ◽  
pp. 500-504 ◽  
Author(s):  
H Peretz ◽  
U Seligsohn ◽  
E Zwang ◽  
B S Coller ◽  
P J Newman

SummarySevere Glanzmann's thrombasthenia is relatively frequent in Iraqi-Jews and Arabs residing in Israel. We have recently described the mutations responsible for the disease in Iraqi-Jews – an 11 base pair deletion in exon 12 of the glycoprotein IIIa gene, and in Arabs – a 13 base pair deletion at the AG acceptor splice site of exon 4 on the glycoprotein IIb gene. In this communication we show that the Iraqi-Jewish mutation can be identified directly by polymerase chain reaction and gel electrophoresis. With specially designed oligonucleotide primers encompassing the mutation site, an 80 base pair segment amplified in healthy controls was clearly distinguished from the 69 base pair segment produced in patients. Patients from 11 unrelated Iraqi-Jewish families had the same mutation. The Arab mutation was identified by first amplifying a DNA segment consisting of 312 base pairs in controls and of 299 base pairs in patients, and then digestion by a restriction enzyme Stu-1, which recognizes a site that is absent in the mutant gene. In controls the 312 bp segment was digested into 235 and 77 bp fragments, while in patients there was no change in the size of the amplified 299 bp segment. The mutation was found in patients from 3 out of 5 unrelated Arab families. Both Iraqi-Jewish and Arab mutations were detectable in DNA extracted from blood and urine samples. The described simple methods of identifying the mutations should be useful for detection of the numerous potential carriers among the affected kindreds and for prenatal diagnosis using DNA extracted from chorionic villi samples.


2014 ◽  
Vol 54 (8) ◽  
pp. 992 ◽  
Author(s):  
Yingying Zhang ◽  
Hehe Liu ◽  
Mingjun Yang ◽  
Shengqiang Hu ◽  
Liang Li ◽  
...  

The enzyme 3β-hydroxysteroid dehydrogenase/isomerase1 (3βHSD1) can catalyse the conversion of pregnenolone to progesterone in the △4-3-ketosteroid metabolic pathway. The aim of the present study was to clone 3βHSD1 and to determine whether this enzyme in the follicular wall has an effect on yolk progesterone in geese (Anser cygnoides). A putative coding sequence of 3βHSD1, which was 1134 nucleotides in length, was successfully obtained by using reverse transcription polymerase chain reaction (RT–PCR). A comparison of the deduced amino acid sequence with chicken, quail, zebra finch, cattle, horse, pig, human and mouse 3βHSD1 showed 89.7%, 88.4%, 87.3%, 55.6%, 54.0%, 53.5%, 55.3% and 52.9% similarity, respectively. The detection of 3βHSD1 mRNA levels in several tissues by quantitative real-time PCR showed that the highest level of 3βHSD1 was in the adrenal gland, followed by the ovary, which indicated that the gene we obtained was the adrenal gland/gonad-specific one. We measured the level of 3βHSD1 mRNA in the follicular wall and determined the concentration of progesterone in the yolk of these ovarian follicles; the concentration of progesterone in the yolk had a pattern of expression similar to that of 3βHSD1 in the follicular wall during follicular development. This result suggests that the expression of 3βHSD1 in the follicular wall may be a main factor that contributes to the accumulation of yolk progesterone.


Sign in / Sign up

Export Citation Format

Share Document