scholarly journals Molecular Cloning, Sequencing, and Characterization of a Putative Acetyl-CoA-C-acetyltransferase cDNA from a Highly Fragrant Orchid Hybrid Vanda Mimi Palmer

Sequencing ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Seow-Ling Teh ◽  
Janna Ong Abdullah ◽  
Parameswari Namasivayam

Vanda Mimi Palmer, a hybrid of Vanda Tan Chay Yan and Vanda tessellata (Roxb.) Hk.f. ex G. Don, is cultivated as a potted ornamental plant mainly for its fragrance rather than its look. Plant acetyl-CoA-C-acetyltransferase (ACA) is involved in the condensation of two acetyl-CoAs to form acetoacetyl-CoA, which condenses with another acetyl-CoA to yield a crucial molecule, 3-hydroxyl-3-methylglutaryl-CoA, at the initial step of the mevalonate (MVA) pathway. An ACA gene from vandaceous orchid has never been reported. We describe the isolation and molecular characterization of an ACA-like gene from V. Mimi Palmer (designated as VMPACA) to facilitate a better understanding of the terpenoid biosynthesis pathway in orchids. The deduced VMPACA encodes a 376-amino-acid protein with a molecular weight of 39 kDa, which comprises an open reading frame of 1128 bp. It is flanked by 87 bp of 5′-untranslated region and 174 bp of 3′-untranslated region including a poly-A tail. Its protein sequence is 81% identical to other plant ACAs and contains a thiolase active site. The fluctuation expression pattern of VMPACA transcript by real-time RT-PCR showed that it is developmentally and temporally regulated with predominant expression in outer and lateral inner tepals compared to vegetative tissues.

2010 ◽  
Vol 142 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Jing Luo ◽  
Geng-Si Xi ◽  
Shu-Min Lü ◽  
Ke Li ◽  
Qing Li

AbstractThe semaphorin gene family plays important roles in axonal guidance in vertebrates and invertebrates. Semaphorin 2a, a member of the semaphorin family, belongs to class 2, which is found only in invertebrates. In our study, semaphorin 2a was cloned from the ant Polyrhachis vicina Roger. The full length of P. vicina semaphorin 2a (Pv-sema-2a) is 2763 base pairs (bp) and it contains a 5′-untranslated region (UTR) 92 bp long and a 3′-UTR 521 bp long. The open reading frame of Pv-sema-2a encodes a 716-amino-acid protein with a predicted molecular mass of 81.1 kilodaltons. Real-time quantitative reverse-transcription – polymerase chain reaction indicated that Pv-sema-2a mRNA is differentially expressed during P. vicina development, in the whole bodies as well as the heads of different castes. The high mRNA levels in embryos and pupae suggest that Pv-sema-2a plays an important role in ant development.


Holzforschung ◽  
2013 ◽  
Vol 67 (4) ◽  
pp. 463-471 ◽  
Author(s):  
Li-Ting Ma ◽  
Sheng-Yang Wang ◽  
Yen-Hsueh Tseng ◽  
Yi-Ru Lee ◽  
Fang-Hua Chu

Abstract The 2,3-oxidosqualene cyclases (OSCs) are a family of enzymes that have an important role in plant triterpene biosynthesis. In this study, an OSC gene designed EtLUS from Eleutherococcus trifoliatus has been cloned. EtLUS includes a 2292-bp open reading frame and encodes a 763-amino acid protein. EtLUS has an MLCYCR motif, which is conserved in lupeol synthases. Comparison of active-site residues and gene expression in yeast showed that EtLUS synthesizes lupeol. However, EtLUS has the highest sequence identity with β-amyrin synthases from Araliaceae rather than lupeol synthases, adding new perspective to the evolution of the OSCs of Araliaceae. Furthermore, EtLUS is upregulated in leaf tissues under methyl jasmonate treatment, which can be interpreted that lupeol and its derivatives play an ecological and physiological role in plant defense against pathogens and insect herbivores.


1993 ◽  
Vol 105 (3) ◽  
pp. 777-785 ◽  
Author(s):  
A.B. Vojtek ◽  
J.A. Cooper

CAP, an adenylyl cyclase associated protein, is present in Saccharomyces cerevisiae and Schizosaccharomyces pombe. In both organisms, CAP is bifunctional: the N-terminal domain binds to adenylyl cyclase, thereby enabling adenylyl cyclase to respond appropriately to upstream regulatory signals, such as RAS in S. cerevisiae; the C-terminal domain is required for cellular morphogenesis. Here, we describe the isolation of a cDNA encoding a CAP homolog from a higher eukaryote. The mouse CAP cDNA contains an open reading frame capable of encoding a 474 amino acid protein. The protein encoded by the mouse CAP cDNA shows extensive homology to the yeast CAP proteins, particularly in the central poly-proline rich region and in the C-terminal domain. By northern analysis, the CAP message appears to be ubiquitous, but not uniform. By indirect immunofluorescence, ectopically expressed mouse CAP protein is found in the cytoplasm of fibroblasts and, in migrating cells, at the leading edge. Expression of the mouse CAP cDNA in S. cerevisiae complements defects associated with loss of the yeast CAP carboxy-terminal domain. Hence, the function of the CAP carboxy-terminal domain has been conserved from yeast to mouse.


2008 ◽  
Vol 57 (1-6) ◽  
pp. 152-157 ◽  
Author(s):  
X. Ji ◽  
Y. Gai ◽  
J. Ma ◽  
C. Zheng ◽  
Z. Mu

Abstract A full-length cDNA encoding sedoheptulose-1,7-bisphosphatase (SBPase; EC 3.1.3.37) was cloned from mulberry (Morus alba var. multicaulis) by rapid amplification of cDNA ends (RACE). The cDNA consisted of 1,527 nucleotides with an open reading frame (ORF) of 1,179 nucleotides encoding a 393 amino acid protein of approximately 42.6 kDa. Sequence comparison analysis showed that mulberry SBPase (MSBPase) had high homology to other plant counterparts. Phylogenetic and molecular evolutionary analysis revealed that MSBPase fell into plant SBPase group. Moreover, SBPase and fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) shared 28-32% identical residues, suggesting that the two enzymes originated from the same evolution branch. Molecular modeling indicated that each subunit of MSBPase was composed of α-helices and β-sheets joined by turns and loops, and folded into a structure of hexahedron shape which was very similar to FBPase.


2008 ◽  
Vol 74 (8) ◽  
pp. 2379-2383 ◽  
Author(s):  
Hitomi Ichinose ◽  
Toshihisa Kotake ◽  
Yoichi Tsumuraya ◽  
Satoshi Kaneko

ABSTRACT The putative endo-β-1,6-galactanase gene from Streptomyces avermitilis was cloned and expressed in Escherichia coli, and the enzymatic properties of the recombinant enzyme were characterized. The gene consisted of a 1,476-bp open reading frame and encoded a 491-amino-acid protein, comprising an N-terminal secretion signal sequence and glycoside hydrolase family 5 catalytic module. The recombinant enzyme, Sa1,6Gal5A, catalyzed the hydrolysis of β-1,6-linked galactosyl linkages of oligosaccharides and polysaccharides. The enzyme produced galactose and a range of β-1,6-linked galacto-oligosaccharides, predominantly β-1,6-galactobiose, from β-1,6-galactan chains. There was a synergistic effect between the enzyme and Sa1,3Gal43A in degrading tomato arabinogalactan proteins. These results suggest that Sa1,6Gal5A is the first identified endo-β-1,6-galactanase from a prokaryote.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Pragya Tiwari ◽  
Rajender Singh Sangwan ◽  
Asha ◽  
B. N. Mishra ◽  
Farzana Sabir ◽  
...  

Gymnema sylvestreR.Br., a pharmacologically important herb vernacularly called Gur-Mar (sugar eliminator), is widely known for its antidiabetic action. This property of the herb has been attributed to the presence of bioactive triterpene glycosides. Although some information regarding pharmacology and phytochemical profiles of the plant are available, no attempts have been made so far to decipher the biosynthetic pathway and key enzymes involved in biosynthesis of steryl glucosides. The present report deals with the identification and catalytic characterization of a glucosyltransferase, catalyzing biosynthesis of steryl glycosides. The full length cDNA (2572 bp) contained an open reading frame of 2106 nucleotides that encoded a 701 amino acid protein, falling into GT-B subfamily of glycosyltransferases. The GsSGT was expressed inEscherichia coliand biochemical characterization of the recombinant enzyme suggested its key role in the biosynthesis of steryl glucosides with catalytic preference for C-3 hydroxyl group of sterols. To our knowledge, this pertains to be the first report on cloning and biochemical characterization of a sterol metabolism gene fromG. sylvestreR.Br. catalyzing glucosylation of a variety of sterols of biological origin from diverse organisms such as bacteria, fungi, and plants.


2001 ◽  
Vol 79 (6) ◽  
pp. 779-782 ◽  
Author(s):  
Gregory Harder ◽  
Ross McGowan

We have isolated and characterized a cDNA sequence corresponding to the zebrafish muscle-specific isoform of creatine kinase. The sequence is 1552 bases in length and contains an open reading frame capable of producing a 381 amino acid protein. The sequence is very similar to muscle-specific creatine kinases isolated from other species at both the nucleotide and amino acid levels but contains some differences from a previously reported zebrafish clone.Key words: creatine kinase, muscle isoform, zebrafish, Danio rerio.


2002 ◽  
Vol 184 (20) ◽  
pp. 5753-5761 ◽  
Author(s):  
Sophie Bozonnet ◽  
Marguerite Dols-Laffargue ◽  
Emeline Fabre ◽  
Sandra Pizzut ◽  
Magali Remaud-Simeon ◽  
...  

ABSTRACT A novel Leuconostoc mesenteroides NRRL B-1299 dextransucrase gene, dsrE, was isolated, sequenced, and cloned in Escherichia coli, and the recombinant enzyme was shown to be an original glucansucrase which catalyses the synthesis of α-1,6 and α-1,2 linkages. The nucleotide sequence of the dsrE gene consists of an open reading frame of 8,508 bp coding for a 2,835-amino-acid protein with a molecular mass of 313,267 Da. This is twice the average mass of the glucosyltransferases (GTFs) known so far, which is consistent with the presence of an additional catalytic domain located at the carboxy terminus of the protein and of a central glucan-binding domain, which is also significantly longer than in other glucansucrases. From sequence comparison with family 70 and α-amylase enzymes, crucial amino acids involved in the catalytic mechanism were identified, and several original sequences located at some highly conserved regions in GTFs were observed in the second catalytic domain.


2018 ◽  
Vol 18 (3) ◽  
pp. 675-684
Author(s):  
Dongmei Jiang ◽  
Ziyu Chen ◽  
Zhixin Yi ◽  
Bo Kang

Abstract Spermidine/spermine N1-acetyltransferase (SSAT ) is a catabolic regulator of polyamines, ubiquitous molecules essential for cell proliferation and differentiation. In this study, the molecular characterization of the SSAT1 gene of the Sichuan white goose was analyzed, as well as its expression profiles in various follicles and tissues. The open reading frame of the SSAT1 cDNA (GenBank No. KM925008) is 516 bp in length and encodes a 171-amino acid protein with a putative molecular weight of 20 kDa. The predicted SSAT1 protein is highly conserved with those of other species, especially Gallus gallus. SSAT1 mRNA was ubiquitously expressed in all the examined tissues. The highest level of SSAT1 mRNA expression was found in the pineal gland (P<0.05), and was 12-fold greater than in the heart. The level of SSAT1 mRNA expression was relatively lower in preovulatory follicles, while it was higher in postovulatory follicles (POFs), particularly in POF1. Furthermore, as postovulatory follicles degenerated, SSAT1 expression gradually decreased. Our findings suggest that SSAT1 might play important roles in mediating the physiological function of the pineal gland and regulating the regression of POFs.


2021 ◽  
Author(s):  
XuTong Wang ◽  
TingTing Sun ◽  
Jian Sun ◽  
Zengcai Liu ◽  
Li Zou

Abstract Lanosterol synthase (LS) is a key enzyme involved in the mevalonate pathway (MVA pathway) to produce lanosterol, which is a precursor for synthesizing Sanghuangporus baumii triterpenoids. To research the characteristics and construction of LS, LS ORF and promoter were cloned from S. baumii. A 2,445 bp S. baumii LS sequence was obtained by rapid amplification of cDNA ends (RACE) technology and recombinant PCR. S. baumii LS sequence includes a 5’-untranslated region (129 bp), a 3’-untranslated region (87 bp), and an open reading frame (2,229 bp) encoding a 734 amino acids. The molecular weight of LS is 84.99 kDa, and transcription start site of S. baumii LS promoter sequence ranged from 1 740 bp to 1790 bp. LS promoter contained 12 CAAT-boxes, 5 ABREs, 6 G-Boxes, 6 CGTCA-motifs, and so on. The S. baumii LS protein was expressed in E. coli BL21 (DE3) (84.99 kDa + 21.15 kDa tag protein). The transcription level of S. baumii LS was the highest on day 11 in mycelia (1.6-fold).


Sign in / Sign up

Export Citation Format

Share Document