Offshore Power Generation Using Natural Gas From Remote Deepwater Developments

Author(s):  
Peter J. Hill ◽  
Bahadir Inozu ◽  
Ting Wang ◽  
John J. Bergeron
2019 ◽  
Author(s):  
James Littlefield ◽  
Selina Roman-White ◽  
Dan Augustine ◽  
Ambica Pegallapati ◽  
George G. Zaimes ◽  
...  

2021 ◽  
Author(s):  
Sergey Osipov ◽  
Olga Zlyvko ◽  
Nikolay Bychkov ◽  
Daria Kharlamova ◽  
Arkadiy Zaryankin

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 944
Author(s):  
Anil C. Banerjee

Methane (the major component of natural gas) is one of the main energy sources for gas-powered turbines for power generation, and transport vehicles [...]


Author(s):  
Elliot Sullivan-Lewis ◽  
Vincent McDonell

Lean-premixed gas turbines are now common devices for low emissions stationary power generation. By creating a homogeneous mixture of fuel and air upstream of the combustion chamber, temperature variations are reduced within the combustor, which reduces emissions of nitrogen oxides. However, by premixing fuel and air, a potentially flammable mixture is established in a part of the engine not designed to contain a flame. If the flame propagates upstream from the combustor (flashback), significant engine damage can result. While significant effort has been put into developing flashback resistant combustors, these combustors are only capable of preventing flashback during steady operation of the engine. Transient events (e.g., auto-ignition within the premixer and pressure spikes during ignition) can trigger flashback that cannot be prevented with even the best combustor design. In these cases, preventing engine damage requires designing premixers that will not allow a flame to be sustained. Experimental studies were conducted to determine under what conditions premixed flames of hydrogen and natural gas can be anchored in a simulated gas turbine premixer. Tests have been conducted at pressures up to 9 atm, temperatures up to 750 K, and freestream velocities between 20 and 100 m/s. Flames were anchored in the wakes of features typical of premixer passageways, including cylinders, steps, and airfoils. The results of this study have been used to develop an engineering tool that predicts under what conditions a flame will anchor, and can be used for development of flame anchoring resistant gas turbine premixers.


Sign in / Sign up

Export Citation Format

Share Document