Predicting Flameholding for Hydrogen and Natural Gas Flames at Gas Turbine Premixer Conditions

Author(s):  
Elliot Sullivan-Lewis ◽  
Vincent McDonell

Lean-premixed gas turbines are now common devices for low emissions stationary power generation. By creating a homogeneous mixture of fuel and air upstream of the combustion chamber, temperature variations are reduced within the combustor, which reduces emissions of nitrogen oxides. However, by premixing fuel and air, a potentially flammable mixture is established in a part of the engine not designed to contain a flame. If the flame propagates upstream from the combustor (flashback), significant engine damage can result. While significant effort has been put into developing flashback resistant combustors, these combustors are only capable of preventing flashback during steady operation of the engine. Transient events (e.g., auto-ignition within the premixer and pressure spikes during ignition) can trigger flashback that cannot be prevented with even the best combustor design. In these cases, preventing engine damage requires designing premixers that will not allow a flame to be sustained. Experimental studies were conducted to determine under what conditions premixed flames of hydrogen and natural gas can be anchored in a simulated gas turbine premixer. Tests have been conducted at pressures up to 9 atm, temperatures up to 750 K, and freestream velocities between 20 and 100 m/s. Flames were anchored in the wakes of features typical of premixer passageways, including cylinders, steps, and airfoils. The results of this study have been used to develop an engineering tool that predicts under what conditions a flame will anchor, and can be used for development of flame anchoring resistant gas turbine premixers.

Author(s):  
Elliot Sullivan-Lewis ◽  
Vincent McDonell

Lean premixed gas turbines are one of the most common methods for stationary power generation. By creating a homogeneous mixture of fuel and air upstream of the combustion chamber, temperature variations are reduced within the combustor, which reduces emissions of nitrogen oxides. However, by premixing fuel and air, a potentially flammable mixture is established in a part of the engine not designed to contain a flame. If the flame propagates upstream from the combustor (flashback), significant engine damage can result. While significant effort has been put into developing flashback resistant combustors, these combustors are only capable of preventing flashback during steady operation of the engine. Transient events (e.g. auto ignition within the premixer, pressure spikes during ignition) can trigger flashback that cannot be prevented with even the best combustor design. In these cases, preventing engine damage requires designing premixers that will not allow a flame to be sustained. Experimental studies were conducted to determine under what conditions premixed flames of hydrogen and natural gas can be anchored in a simulated gas turbine premixer. Tests have been conducted at pressures up to 9 atm, temperatures up to 750 K, and free stream velocities between 20 and 100 m/s. Flames were anchored in the wakes of features typical of premixer passageways, including cylinders, steps and airfoils. The results of this study have been used to develop tools that predict when a flame remains anchored to a particular feature.


Author(s):  
Pierre A. Glaude ◽  
Rene´ Fournet ◽  
Roda Bounaceur ◽  
Michel Molie`re

Many investigations are currently carried out in order to reduce CO2 emissions in power generation. Among alternative fuels to natural gas and gasoil in gas turbine applications, dimethyl ether (DME; formula: CH3-O-CH3) represents a possible candidate in the next years. This chemical compound can be produced from natural gas or coal/biomass gasification. DME is a good substitute for gasoil in diesel engine. Its Lower Heating Value is close to that of ethanol but it offers some advantages compared to alcohols in terms of stability and miscibility with hydrocarbons. While numerous studies have been devoted to the combustion of DME in diesel engines, results are scarce as far as boilers and gas turbines are concerned. Some safety aspects must be addressed before feeding a combustion device with DME because of its low flash point (as low as −83°C), its low auto-ignition temperature and large domain of explosivity in air. As far as emissions are concerned, the existing literature shows that in non premixed flames, DME produces less NOx than ethane taken as parent molecular structure, based on an equivalent heat input to the burner. During a field test performed in a gas turbine, a change-over from methane to DME led to a higher fuel nozzle temperature but to a lower exhaust gas temperature. NOx emissions decreased over the whole range of heat input studied but a dramatic increase of CO emissions was observed. This work aims to study the combustion behavior of DME in gas turbine conditions with the help of a detailed kinetic modeling. Several important combustion parameters, such as the auto-ignition temperature (AIT), ignition delay times, laminar burning velocities of premixed flames, adiabatic flame temperatures, and the formation of pollutants like CO and NOx have been investigated. These data have been compared with those calculated in the case of methane combustion. The model was built starting from a well validated mechanism taken from the literature and already used to predict the behavior of other alternative fuels. In flame conditions, DME forms formaldehyde as the major intermediate, the consumption of which leads in few steps to CO then CO2. The lower amount of CH2 radicals in comparison with methane flames seems to decrease the possibility of prompt-NO formation. This paper covers the low temperature oxidation chemistry of DME which is necessary to properly predict ignition temperatures and auto-ignition delay times that are important parameters for safety.


Author(s):  
Roda Bounaceur ◽  
Pierre-Alexandre Glaude ◽  
Baptiste Sirjean ◽  
René Fournet ◽  
Pierre Montagne ◽  
...  

Gas turbines burn a large variety of gaseous fuels under elevated pressure and temperature conditions. During transient operations, variable gas/air mixtures are involved in the gas piping system. In order to predict the risk of auto-ignition events and ensure a safe operation of gas turbines, it is of the essence to know the lowest temperature at which spontaneous ignition of fuels may happen. Experimental auto-ignition data of hydrocarbon–air mixtures at elevated pressures are scarce and often not applicable in specific industrial conditions. Auto-ignition temperature (AIT) data correspond to temperature ranges in which fuels display an incipient reactivity, with timescales amounting in seconds or even in minutes instead of milliseconds in flames. In these conditions, the critical reactions are most often different from the ones governing the reactivity in a flame or in high temperature ignition. Some of the critical paths for AIT are similar to those encountered in slow oxidation. Therefore, the main available kinetic models that have been developed for fast combustion are unfortunately unable to represent properly these low temperature processes. A numerical approach addressing the influence of process conditions on the minimum AIT of different fuel/air mixtures has been developed. Several chemical models available in the literature have been tested, in order to identify the most robust ones. Based on previous works of our group, a model has been developed, which offers a fair reconciliation between experimental and calculated AIT data through a wide range of fuel compositions. This model has been validated against experimental auto-ignition delay times corresponding to high temperature in order to ensure its relevance not only for AIT aspects but also for the reactivity of gaseous fuels over the wide range of gas turbine operation conditions. In addition, the AITs of methane, of pure light alkanes, and of various blends representative of several natural gas and process-derived fuels were extensively covered. In particular, among alternative gas turbine fuels, hydrogen-rich gases are called to play an increasing part in the future so that their ignition characteristics have been addressed with particular care. Natural gas enriched with hydrogen, and different syngas fuels have been studied. AIT values have been evaluated in function of the equivalence ratio and pressure. All the results obtained have been fitted by means of a practical mathematical expression. The overall study leads to a simple correlation of AIT versus equivalence ratio/pressure.


Author(s):  
Justin Zachary

Since 1998, the United States has experienced a tremendous increase in power generation projects using gas turbine technology. By burning natural gas as the primary fuel and low sulfur oil as a back-up fuel, gas turbines are the cleanest form of fossil power generation.


Author(s):  
Pierre-Alexandre Glaude ◽  
Baptiste Sirjean ◽  
René Fournet ◽  
Roda Bounaceur ◽  
Matthieu Vierling ◽  
...  

Heavy duty gas turbines are very flexible combustion tools that accommodate a wide variety of gaseous and liquid fuels ranging from natural gas to heavy oils, including syngas, LPG, petrochemical streams (propene, butane…), hydrogen-rich refinery by-products; naphtha; ethanol, biodiesel, aromatic gasoline and gasoil, etc. The contemporaneous quest for an increasing panel of primary energies leads manufacturers and operators to explore an ever larger segment of unconventional power generation fuels. In this moving context, there is a need to fully characterize the combustion features of these novel fuels in the specific pressure, temperature and equivalence ratio conditions of gas turbine combustors using e.g. methane as reference molecule and to cover the safety aspects of their utilization. A numerical investigation of the combustion of a representative cluster of alternative fuels has been performed in the gas phase, namely two natural gas fuels of different compositions, including some ethane, a process gas with a high content of butene, oxygenated compounds including methanol, ethanol, and DME (dimethyl ether). Sub-mechanisms have specifically been developed to include the reactions of C4 species. Major combustion parameters, such as auto-ignition temperature (AIT), ignition delay times (AID), laminar burning velocities of premixed flames, adiabatic flame temperatures, and CO and NOx emissions have then been investigated. Finally, the data have been compared with those calculated for methane flames. These simulations show that the behaviors of alternative fuels markedly differ from that of conventional ones. Especially, DME and the process gases appear to be highly reactive with significant impacts on the auto-ignition temperature and flame speed data, which justifies burner design studies within premixed combustion schemes and proper safety considerations. The behaviors of alcohols (especially methanol) display some commonalities with those of conventional fuels. In contrast, DME and process gas fuels develop substantially different flame temperature and NOx generation rates than methane. Resorting to lean premix conditions is likely to achieve lower NOx emission performances. This review of gas turbine fuels shows for instance that the use of methanol as a gas turbine fuel is possible with very limited combustor modifications.


Author(s):  
Stefan Bauer ◽  
Balbina Hampel ◽  
Thomas Sattelmayer

Vortex generators are known to be effective in augmenting the mixing of fuel jets with air. The configuration investgated in this study is a tubular air passage with fuel injection from one single orifice placed in the side wall. In the range of typical gas turbine combustor inlet temperatures, the performance vortex generator premixers (VGPs) have already been investigated for natural gas as well as for blends of natural gas and hydrogen. However, for highly reactive fuels, the application of VGPs in recuperated gas turbines is particularly challenging because the high combustor inlet temperature leads to potential risk with regard to premature self-ignition and flame flashback. As the current knowledge does not cover the temperature range far above the self-ignition temperature, an experimental investigation of the operational limits of VGPs is currently being conducted at the Thermodynamics Institute of the Technical University of Munich, which is particularly focused on reactive fuels and the thermodynamic conditions present in recuperated gas turbines with pressure ratios of 4–5. For the study presented in the paper, an atmospheric combustion VGP test rig has been designed, which facilitates investigations in a wide range of operating conditions in order to comply with the situation in recuperated micro gas turbines, namely global equivalence ratios between 0.2 and 0.7, air preheating temperatures between 288K and 1100K, and air bulk flow rates between 6–16 g/s. Both the entire mixing zone in the VGP and the primary combustion zone of the test rig are optically accessible. High speed OH* chemiluminescence imaging is used for the detection of the flashback and blow-off limits of the investigated VGPs. Flashback and blow-off limits of hydrogen in a wide temperature range covering the auto-ignition regime are presented, addressing the influences of equivalence ratio, air preheating temperature and momentum ratio between air and hydrogen on the operational limits in terms of bulk flow velocity. It is shown that flashback and blow-off limits are increasingly influenced by auto-ignition in the ultra-high temperature regime.


Author(s):  
Jeffrey Goldmeer ◽  
Richard Symonds ◽  
Paul Glaser ◽  
Bassam Mohammad ◽  
Zac Nagel ◽  
...  

Global trends in natural gas and distillate oil prices and availability continue to influence decisions on power generation fuel choice. In some regions, heavy liquids are being selected as gas turbine fuels. One particular crude oil, Arabian Super Light (ASL), has the potential to be used as a primary or back-up fuel in F-class heavy duty gas turbines. This paper presents the results of a set of tests performed on ASL to determine the potential of using it in a Dry Low NOx (DLN) combustion system for operation in an F-class gas turbine.


Author(s):  
Anup Singh

In the 1970s, power generation from gas turbines was minimal. Gas turbines in those days were run on fuel oil, since there was a so-called “natural gas shortage”. The U.S. Fuel Use Act of 1978 essentially disallowed the use of natural gas for power generation. Hence there was no incentive on the part of gas turbine manufacturers to invest in the development of gas turbine technology. There were many regulatory developments in the 1980s and 1990s, which led to the rapid growth in power generation from gas turbines. These developments included Public Utility Regulatory Policy Act of 1978 (encouraging cogeneration), FERC Order 636 (deregulating natural gas industry), Energy Policy Act of 1992 (creating EWGs and IPPs) and FERC Order 888 (open access to electrical transmission system). There was also a backlash from excessive electric rates due to high capital recovery of nuclear and coal-fired plant costs caused by tremendous cost increase resulting from tightening NRC requirements for nuclear plants and significant SO2/NOx/other emissions controls required for coal-fired plants. During this period, rapid technology developments took place in the metallurgy, design, efficiency, and reliability of gas turbines. In addition, U.S. DOE contributed to these developments by encouraging research and development efforts in high temperature and high efficiency gas turbines. Today we are seeing a tremendous explosion of power generating facilities by electric utilities and Independent Power Producers (IPPs). A few years ago, Merchant Power (generation without power purchase agreements) was unheard of. Today it is growing at a very fast pace. Can this rapid growth be sustained? The paper will explore the factors that will play a significant role in the future growth of gas turbine-based power generation in the U.S. The paper will also discuss the methods and developments that could decrease the capital costs of gas turbine power plants resulting in the lowest cost generation compared to other power generation technologies.


Author(s):  
Thomas Bexten ◽  
Sophia Jörg ◽  
Nils Petersen ◽  
Manfred Wirsum ◽  
Pei Liu ◽  
...  

Abstract Climate science shows that the limitation of global warming requires a rapid transition towards net-zero emissions of greenhouse gases (GHG) on a global scale. Expanding renewable power generation is seen as an imperative measure within this transition. To compensate for the inherent volatility of renewable power generation, flexible and dispatchable power generation technologies such as gas turbines are required. If operated with CO2-neutral hydrogen or in combination with carbon capture plants, a GHG-neutral gas turbine operation could be achieved. An effective leverage to enhance carbon capture efficiency and a possible measure to safely burn hydrogen in gas turbines is the partial external recirculation of exhaust gas. By means of a model-based analysis of a gas turbine, the present study initially assesses the thermodynamic impact caused by a fuel switch from natural gas to hydrogen. Although positive trends such as increasing net electrical power output and thermal efficiency can be observed, the overall effect on the gas turbine process is only minor. In a following step, the partial external recirculation of exhaust gas is evaluated and compared both for the combustion of natural gas and hydrogen, regardless of potential combustor design challenges. The influence of altering working fluid properties throughout the whole gas turbine process is thermodynamically evaluated for ambient temperature recirculation and recirculation at an elevated temperature. A reduction in thermal efficiency can be observed as well as non-negligible changes of relevant process variables. These changes are more distinctive at a higher recirculation temperature


Author(s):  
Michel Moliere ◽  
Frederic Geiger

Heavy Duty Gas Turbines enjoy a wide fuel capability that makes them increasingly popular power generation tools in several branches of the industry. Among Alternative Fuels for gas turbines is a group of “Aromatic Fuels”. These fuels are presently virtually unknown but they offer interesting prospects namely for captive power in the refining and petrochemistry. Until now there has been a limited awareness of the combustion issues posed by Aromatic Fuels especially in the high temperature, medium pressure conditions of gas turbine combustors. This apparent disinterest is tied to various issues namely: - smoke problems faced by the aviation sector during the 70’s that were caused by “aromatic jet fuels”; - the supremacy of natural gas that monopolizes R&D combustion efforts for power applications. The success of light aromatics in spark engines as substitutes for lead-based RON improvers has been stopped by the ban of aromatics in car fuels. Toxicity is thus another blemish of aromatic fuels. Chemically, aromatic fuels involve a wide diversity of molecules in structure and size, ranging from simple mono-aromatics (one benzene ring) to poly-aromatics (up to 3 condensed benzene rings). The general combustion problem posed by aromatic fuels lies in the high thermal stability of the benzene ring in oxidative conditions and its propensity to condense on itself and to form soot particles. In addition, the high Auto Ignition Temperature and Delay of Aromatic Fuels make them improper for combustion in Diesel engines and require large residence time in atmospheric flames. Interestingly, it appears that, with their hot and lean diffusion flames and relatively oxidizing combustion zones, Heavy Duty Gas Turbines exhibit a remarkable ability to break and cleanly burn out these molecules. The paper presents this new class of gas turbine fuels, outlines their market rationale and offers key combustion considerations to ensure clean utilization. It also summarizes the experience gathered by a gas turbine manufacturer in the combustion of BTX, C9+ and LCO type fuels. It also outlines the chemical mechanisms that underlie the clean combustion of aromatic fuels in gas turbine chambers.


Sign in / Sign up

Export Citation Format

Share Document