scholarly journals The p110δ Isoform of Phosphatidylinositol 3-Kinase Controls Susceptibility toLeishmania majorby Regulating Expansion and Tissue Homing of Regulatory T Cells

2009 ◽  
Vol 183 (3) ◽  
pp. 1921-1933 ◽  
Author(s):  
Dong Liu ◽  
Tingting Zhang ◽  
Aaron J. Marshall ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  
2009 ◽  
Vol 182 (11) ◽  
pp. 6763-6770 ◽  
Author(s):  
Mélika Ben Ahmed ◽  
Nadia Belhadj Hmida ◽  
Nicolette Moes ◽  
Sophie Buyse ◽  
Maha Abdeladhim ◽  
...  

2020 ◽  
Vol 205 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Anne-Katrien Stark ◽  
Elizabeth C. M. Davenport ◽  
Daniel T. Patton ◽  
Cheryl L. Scudamore ◽  
Bart Vanhaesebroeck ◽  
...  

1995 ◽  
Vol 92 (22) ◽  
pp. 10142-10146 ◽  
Author(s):  
N. Bonnefoy-Berard ◽  
Y. C. Liu ◽  
M. von Willebrand ◽  
A. Sung ◽  
C. Elly ◽  
...  

2009 ◽  
Vol 20 (17) ◽  
pp. 3783-3791 ◽  
Author(s):  
Shekhar Srivastava ◽  
Lie Di ◽  
Olga Zhdanova ◽  
Zhai Li ◽  
Santosha Vardhana ◽  
...  

The Ca2+-activated K+ channel KCa3.1 is required for Ca2+ influx and the subsequent activation of T-cells. We previously showed that nucleoside diphosphate kinase beta (NDPK-B), a mammalian histidine kinase, directly phosphorylates and activates KCa3.1 and is required for the activation of human CD4 T lymphocytes. We now show that the class II phosphatidylinositol 3 kinase C2β (PI3K-C2β) is activated by the T-cell receptor (TCR) and functions upstream of NDPK-B to activate KCa3.1 channel activity. Decreased expression of PI3K-C2β by siRNA in human CD4 T-cells resulted in inhibition of KCa3.1 channel activity. The inhibition was due to decreased phosphatidylinositol 3-phosphate [PI(3)P] because dialyzing PI3K-C2β siRNA-treated T-cells with PI(3)P rescued KCa3.1 channel activity. Moreover, overexpression of PI3K-C2β in KCa3.1-transfected Jurkat T-cells led to increased TCR-stimulated activation of KCa3.1 and Ca2+ influx, whereas silencing of PI3K-C2β inhibited both responses. Using total internal reflection fluorescence microscopy and planar lipid bilayers, we found that PI3K-C2β colocalized with Zap70 and the TCR in peripheral microclusters in the immunological synapse. This is the first demonstration that a class II PI3K plays a critical role in T-cell activation.


1994 ◽  
Vol 179 (3) ◽  
pp. 1071-1076 ◽  
Author(s):  
K E Truitt ◽  
C M Hicks ◽  
J B Imboden

The T cell surface molecule CD28 can provide costimulatory signals that permit the full activation of T cells. Here we demonstrate that stimulation of CD28, either by B7, its natural ligand, or by the anti-CD28 monoclonal antibody 9.3, induces an association between CD28 and phosphatidylinositol 3-kinase (PI3-K) in Jurkat T cells, raising the possibility that an interaction with PI3-K contributes to CD28-mediated signaling. To examine the mechanism of the association, we synthesized tyrosine-phosphorylated oligopeptides corresponding to each of the four tyrosines in the CD28 cytoplasmic domain. When added to lysates of B7-stimulated Jurkat cells, the oligopeptide corresponding to Tyr 173 inhibits the coimmunoprecipitation of PI3-K with CD28; the other oligopeptides have no effect. Tyr 173 is contained within the sequence YMNM, a motif that is also found in the platelet-derived growth factor receptor and that, when phosphorylated, forms a high affinity binding site for the p85 subunit of PI3-K. These observations suggest that phosphorylation of Tyr 173 may mediate the interaction between CD28 and PI3-K. However, because CD28 is not known to be phosphorylated, it remains possible that CD28 interacts with PI3-K through a mechanism independent of tyrosine phosphorylation.


2000 ◽  
Vol 276 (7) ◽  
pp. 4872-4878 ◽  
Author(s):  
Deyu Fang ◽  
Hong-Ying Wang ◽  
Nan Fang ◽  
Yoav Altman ◽  
Chris Elly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document