scholarly journals Role of Macrophage Migration Inhibitory Factor in the Regulatory T Cell Response of Tumor-Bearing Mice

2012 ◽  
Vol 189 (8) ◽  
pp. 3905-3913 ◽  
Author(s):  
Susanna Choi ◽  
Hang-Rae Kim ◽  
Lin Leng ◽  
Insoo Kang ◽  
William L. Jorgensen ◽  
...  
2020 ◽  
Vol 64 (1) ◽  
pp. 33-38
Author(s):  
Zhongjun Fan ◽  
Huanli Wang ◽  
Jiahao Pan ◽  
Shupei Yu ◽  
Wenlong Xia

AbstractIntroductionMarek’s disease virus (MDV) can cause malignant T-cell lymphomas and immunosuppression in chickens. Macrophage migration inhibitory factor (MIF) not only plays a critical role in inhibiting T-cell responses, but also contributes to multiple aspects of tumour progression. The aim of this study was to reveal the potential role of MIF in the pathogenesis of MDV infection.Material and MethodsMIF gene expression levels were measured by using real-time PCR. Expression was assayed at different times in chicken embryo fibroblast (CEF) cells and tissue samples of SPF chickens infected with different MDV strains and fold change was calculated by the 2–△△CT method.ResultsThe expression of MIF was significantly downregulated (p < 0.05 and FC > 2) in CEF cells infected with the very virulent MDV RB1B strain at 48 h post infection (hpi) and in the skin and spleen at 14 days post infection (dpi). The reduction of MIF expression was also found in CEF cells infected by reticuloendotheliosis virus (REV), avian leukosis virus subgroup J (ALV-J), and MDV vaccine strain CVI988 or in HD11 cells stimulated with TLR2, 3, 4, and 7 ligands. Interestingly, MIF expression decreased continuously from 7 to 28 dpi in the thymus after RB1B virus infection while it increased after CVI988 virus infection. Upregulated expression of MIF was found in CEF infected with RB1B at 96 hpi and in the spleen and skin at 21 and 28 dpi.ConclusionThe present study revealed the different expression pattern of MIF in response to MDV infection and indicated that MIF level may be associated with MDV pathogenesis.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
XiYong Yu ◽  
ZhiXin Shan ◽  
QiuXiong Lin ◽  
ShiXia Cai ◽  
Min Yang ◽  
...  

2002 ◽  
Vol 283 (1) ◽  
pp. L156-L162 ◽  
Author(s):  
Yoshinori Tanino ◽  
Hironi Makita ◽  
Kenji Miyamoto ◽  
Tomoko Betsuyaku ◽  
Yoshinori Ohtsuka ◽  
...  

Macrophage migration inhibitory factor (MIF) is a unique cytokine that reportedly overrides the anti-inflammatory effect of endogenous glucocorticoids. MIF has been demonstrated to be involved in a variety of inflammatory diseases. In this study, we examined the role of MIF in bleomycin (BLM)-induced lung injury and fibrosis. The levels of MIF in lung tissues and bronchoalveolar lavage fluids were significantly increased in the period 5–10 days after intratracheal administration of BLM. Treatment with the anti-MIF antibody significantly reduced the mortality at 14 days and the histopathological lung injury score at 10 days. These effects were accompanied with significant suppression of the accumulation of inflammatory cells in the alveolar space and tumor necrosis factor-α in the lungs at 7 days. However, the anti-MIF antibody did not affect either the content of lung hydroxyproline or the histopathological lung fibrosis score at 21 days after BLM. These data provide further evidence for the crucial role of MIF in acute lung inflammation but do not support the involvement of MIF in lung fibrosis induced by BLM in mice.


2018 ◽  
Vol 2018 (2) ◽  
Author(s):  
Mohamed Ahmed ◽  
Edmund Miller

Macrophage migration inhibitory factor (MIF) has been described as a pro-inflammatory cytokine and regulator of neuro-endocrine function. It plays an important upstream role in the inflammatory cascade by promoting the release of other inflammatory cytokines such as TNF-alpha and IL-6, ultimately triggering a chronic inflammatory immune response. As lungs can synthesize and release MIF, many studies have investigated the potential role of MIF as a biomarker in assessment of patients with pulmonary arterial hypertension (PAH) and using anti-MIFs as a new therapeutic modality for PAH.


2020 ◽  
Vol 64 (2) ◽  
Author(s):  
Carla Loreto ◽  
Rosario Caltabiano ◽  
Adriana Carol Eleonora Graziano ◽  
Sergio Castorina ◽  
Claudia Lombardo ◽  
...  

Fluoro-edenite (FE), an asbestiform fiber, is responsible for many respiratory pathologies: chronic obstructive diseases, pleural plaques, fibrosis, and malignant mesothelioma. Macrophage migration inhibitory factor (MIF) is one of the first cytokines produced in response to lung tissue damage. Heme oxygenase-1 (HO-1) is a protein with protective effects against oxidative stress. It is up regulated by several stimuli including pro-inflammatory cytokines and factors that promote oxidative stress. In this research, the in vivo model of sheep lungs naturally exposed to FE was studied in order to shed light on the pathophysiological events sustaining exposure to fibers, by determining immunohistochemical lung expression of MIF and HO-1. Protein levels expression of HO-1 and MIF were also evaluated in human primary lung fibroblasts after exposure to FE fibers in vitro. In exposed sheep lungs, MIF and HO-1 immunoexpression were spread involving the intraparenchymal stroma around bronchioles, interstitium between alveoli, alveolar epithelium and macrophages. High MIF immunoexpression prevails in macrophages. Similar results were obtained in vitro, but significantly higher values were only detected for HO-1 at concentrations of 50 and 100 μg/mL of FE fibers. MIF and HO-1 expressions seem to play a role in lung self-protection against uncontrolled chronic inflammation, thus counteracting the strong link with cancer development, induced by exposure to FE. Further studies will be conducted in order to add more information about the role of MIF and HO-1 in the toxicity FE-induced.


Sign in / Sign up

Export Citation Format

Share Document