scholarly journals Inhibition of the Death Receptor Pathway by cFLIP Confers Partial Engraftment of MHC Class I-Deficient Stem Cells and Reduces Tumor Clearance in Perforin-Deficient Mice

2001 ◽  
Vol 167 (8) ◽  
pp. 4230-4237 ◽  
Author(s):  
Mesha Austin Taylor ◽  
Preet M. Chaudhary ◽  
Jennifer Klem ◽  
Vinay Kumar ◽  
John D. Schatzle ◽  
...  
1998 ◽  
Vol 188 (9) ◽  
pp. 1611-1619 ◽  
Author(s):  
Mark J. Smyth ◽  
Janice M. Kelly ◽  
Alan G. Baxter ◽  
Heinrich Körner ◽  
Jonathon D. Sedgwick

Natural killer (NK) cells are thought to provide the first line of defence against tumors, particularly major histocompatibility complex (MHC) class I− variants. We have confirmed in C57BL/6 (B6) mice lacking perforin that peritoneal growth of MHC class I− RMA-S tumor cells in unprimed mice is controlled by perforin-dependent cytotoxicity mediated by CD3− NK1.1+ cells. Furthermore, we demonstrate that B6 mice lacking tumor necrosis factor (TNF) are also significantly defective in their rejection of RMA-S, despite the fact that RMA-S is insensitive to TNF in vitro and that spleen NK cells from B6 and TNF-deficient mice are equally lytic towards RMA-S. NK cell recruitment into the peritoneum was abrogated in TNF-deficient mice challenged with RMA-S or RM-1, a B6 MHC class I− prostate carcinoma, compared with B6 or perforin-deficient mice. The reduced NK cell migration to the peritoneum of TNF-deficient mice correlated with the defective NK cell response to tumor in these mice. By contrast, a lack of TNF did not affect peptide-specific cytotoxic T lymphocyte–mediated rejection of tumor from the peritoneum of preimmunized mice. Overall, these data show that NK cells delivering perforin are the major effectors of class I− tumor rejection in the peritoneum, and that TNF is specifically critical for their recruitment to the peritoneum.


2002 ◽  
Vol 196 (6) ◽  
pp. 817-827 ◽  
Author(s):  
Joke M.M. den Haan ◽  
Michael J. Bevan

Murine splenic dendritic cells (DCs) can be divided into two subsets based on CD8α expression, but the specific role of each subset in stimulation of T cells is largely unknown. An important function of DCs is the ability to take up exogenous antigens and cross-present them in the context of major histocompatibility complex (MHC) class I molecules to CD8+ T cells. We previously demonstrated that, when cell-associated ovalbumin (OVA) is injected into mice, only the CD8+ DC subset cross-presents OVA in the context of MHC class I. In contrast to this selectivity with cell-associated antigen, we show here that both DC subsets isolated from mice injected with OVA/anti-OVA immune complexes (OVA-IC) cross-present OVA to CD8+ T cells. The use of immunoglobulin G Fc receptor (FcγR) common γ-chain–deficient mice revealed that the cross-presentation by CD8− DCs depended on the expression of γ-chain–containing activating FcγRs, whereas cross-presentation by CD8+ DCs was not reduced in γ-chain–deficient mice. These results suggest that although CD8+ DCs constitutively cross-present exogenous antigens in the context of MHC class I molecules, CD8− DCs only do so after activation, such as via ligation of FcγRs. Cross-presentation of immune complexes may play an important role in autoimmune diseases and the therapeutic effect of antitumor antibodies.


FEBS Letters ◽  
2007 ◽  
Vol 581 (3) ◽  
pp. 394-400 ◽  
Author(s):  
Véronique Rolli ◽  
Mirjana Radosavljevic ◽  
Valérie Astier ◽  
Cécile Macquin ◽  
Isabelle Castan-Laurell ◽  
...  
Keyword(s):  
Class I ◽  

2004 ◽  
Vol 172 (12) ◽  
pp. 7848-7858 ◽  
Author(s):  
Yasuhiro Tanaka ◽  
Shigeo Koido ◽  
Jianchuan Xia ◽  
Masaya Ohana ◽  
Chunlei Liu ◽  
...  
Keyword(s):  
Class I ◽  

Sign in / Sign up

Export Citation Format

Share Document